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ABSTRACT

Numerical solutions are obtained for two-dimensional incompressible
turbulent viscous flow over airfoils of arbitrary geometry. An algebraic
eddy viscosity turbulence model based on Prandtl's mixing length theory
is modified for separated adverse pressure gradient flows. Finite dif-
ference methods for solving the inviscid stream function equation and the
incompressible laminar Navier~Stokes equations are used. A finite difference
method for solving the Reynolds averaged incompressible turbulent two-
dimensional Navier-Stokes equations is employed.

The inviscid stream function equation and the Navier-Stokes equations
are transformed using a curvilinear transformation. A body~fitted coor-
dinate system with a constant coordinate line defining the airfoil section
surface is transformed to a rectangular coordinate system in the trans-
formed or computational plane., An elliptic partial differential Poisson
equation for each coordinate is used to generate the coordinate system in
the physical plane for arbitrary airfoils.

The two-dimensional time dependent Reynolds averaged incompressible
Navier-Stokes equations in the primitive variables of velocity and
pressure and a Poisson pressure equation are numerically solved. Turbu-
lence is modelled with an adverse pressure gradient eddy viscosity tech-
nique. An implicit finite difference method is used to solve the set of
transformed partial differential equations. The system of linearized
simultaneous difference equations, at each time step, is solved using

successive-over~relaxation iteration. Far field boundary conditions are

Xix




examined. Solutions for a NACA 0012 airfoil at angles of attack varving ' v
from five to 11.5 degrees at a chord Reynolds number of 170,000 are i-
obtained. Velocity profiles near the airfoil surface and surface pres-

sure distributions are presented and compared with experimental data.

Lift and drag coefficients agree well with experimental values. The

computed lift coefficients near stall are within 57 of the experimental |
measurements, and the numerical drag coefficients agree within ten drag
counts in the region of maximum 1lift to drag ratio. The short laminar
separation bubble near the suction pressure peak is numerically determined.
The variation of bubble length and turbulent transition length with angle of

attack are similar to experimental trends.

———
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SECTION 1

INTRODUCTION

Much effort has been expended by the aeronautical community in do-
ternining the aerodvnamic characteristics of airfoils. Lincar noetiod
are extensively used in design work for studving configurations at srall
angles of attack with negligible flow separation. Experimental wind
tunnel investigations are used to determine the characteristics near stall
where separation phenomena become important. Recent developments in
nurerical techniques have stimulated research on another approach, namelw
the numerical solution of the Navier-Stokes equations. These equations
model the viscous effects which contribute to airfoil stall. For this
reason, numerical Navier~Stokes methods offer the possibility of determin-
ing the aerodynamic characteristics for airfoils experiencing stall.
Numerical methods can also complement experimental methods by efficiently
extending the range of parameters under investigation. Furthermore,
nunmerical methods eliminate model support interference and wall interference
effects found in wind tunnel testing.

The purpose of this investigation is to develop a numerical Navier-
Stokes method that will accurately determine the aserodvnamic characteristics
of incompressible turbulent viscous flow over two-dimensional airfoils near
stall.

The development of a numerical method for turbulent flow requires
a suitable technique for distributing points throughout the flow ficld
and a model which describes the behavior of turbulence within spoci©ic
regions of the flow field., A survey of numerical prid generating teching e

and available turbulence models is presented.  The quantity of litorature

concerned with the Navier-Stokes equations is extensive. Thore: ro, o




summary of the literature, which describes formulations of the XNavier-
Stokes equations and their numerical solving techniques applicd to {lows
over airfoils, is given. The research objectives for this work are

then discussed, and a summary of the remaining sections is presented.

Bodv-fitted curvilinear coordinate systems greatly enhance the
application of numerical methods to practical boundarv value problems
invelving partial differential equations. The representation of a
boundary surface as a coordinate line reduces the difficulties associated
with numerically specifyving boundary conditions by interpolation in finite
differences methods. In the physical (x,v) planc, values for once compu-
tational coordinate ! are specified at selected points on both the body
surface and the outer boundary, Constant values for the other computational
coordinate ' are specified on both the body surface and the outer {low
boundary. The transformed computational (Y, ") plane then beconcs a
rectangular region with an orthogonal grid. Winslow (1) and Chu (2)
introduced the concept for two-dimensional regions interior to a closcd
boundary. Their transformed coordinates are solutions of Laplace's
equation in the phvsical plane and define a triangular mesh svstem in
the phvsical plane. Amsden and Hirt (3) took the phyvsical coordinates
to be solutions of a modified Laplace's equation in the transforned
plance.

Thompson, Thames, and Mastin (4,5,6) generalized the method for the
automatic generation of body~fitted coordinates for anv two~-dimensional,
multi-connected region. They alse introdoced the use of forcing functions
in a Poisson equation which provides nesh control in regions with lar.c

gradients. Hodve (7Y developed an automated wrid line attraction rethnd

based ¢n boundary laver theory which determines the cocfficients in hiw

B



forcing function. Hodge assumed a Blasius boundary laver profice and
distributed his grid points at approximately equal velocity increment:

in the boundary laver. Steger and Sorenson (&) introduced auxiliar:
conditions for the forcing functions which provide ancle and distance
control at the inner boundary surtace.  The angle with which o 0 line
intersects the body surface is specified by a function (1), and the

rate of change of arclength with ' on a ¢ line at the bodv surface i-
prescribed by s (0. Sorenson (9) later imposed similar condition= on

an outer computational boundary. These auxiliary conditions arc used to
solve for coetricients in the chosen exponential forcing functions. Tl
geometric conditions hold exactly only in the limit as ' approaccihes ooro.
Sorenson reported that numerical instabilities occur for large chance.

in the coefficients during successive iterations and for boundarics with
sharp corners. He implemented a limit function which damped the change of

the value for each coefficient over one iteration; and at sharp corners i

computed average valucs of each coefficient from data at the neigih
boundary points. Mastin and Thompson (10) have also extended the elliptic
body-fitted coordinate generation technique to three dimensions for simplc
geonetries,

Sonie other specific grid genceration techniques which use propertics of
elliptic differential equations have alsc been reported. Mevder (11)
constructed an orthogonal curvilinear coordinate system by using clectric
field theory. He solved the potential equation twice with different st
of mixed Dirichlet and Yeumann boundary conditions for the electric potential

and electric force lines, respectively. These solutions, however, were

obtained in the phvsical plane using interpelation and became the curei

coordinate lines in the physical plane. The coordincte metrics were fhen

used to formulate a finite difference cquation which was alse =olved in thn




phvsical planc. Conformal mapping techniques which employ the Theodorsen-
Garick (12) trars: 'rmation have becn examined by Ives (13). He introduced
the use of fast Fourier transform methods and developed a new class of
transformations which maps the flow field of a two-element airfoil onto
the region hetween two concentric circles. Conformal technigques are not

capable of being extended to three-dimensiconal geometries (L). Neither

ey

of these approaches offers a convenient means for mesh control in regione
of large flow gradients.
Recently, a geometric grid generistivn technique has been introduced b

-

Gibeling, Shamroth, and Eiseman (14). The technique parameterizes (t) the
body and outer boundary surfaces and uses a stretching function R(r) for
mesh attraction along constructed lines perpendicular to the body surfcce.
Unit increments for ordered pairs (t,r) generate the corresponding cormjuta=
tional plane. Further refinements which provide angle and arclength
variation control at a body surface have subsequently heen developed by
Eiseman (15,16,17).

The search for an accurate and universal turbulence model has parallelcdd

N

the development of bodyv-fitted grid generction technigues. In princiyle

[}

the Navier-Stokes eguations completelv describe the turbulent fluctuating

fluid motion. The required mesh resolution, necessary to resolve the tur-

bulent eddies with varving length scales, when translated into c¢oo

resources presently make this approach unfeasible. DMany quantitics of on-
gineering interest in turbulent flows involve a mean vailue taken over a tinoe
interval. The time interval is sufficiently long to include manv f{luctuations
while small compared with the characteristic time of the mean {low.  Tie
Navier-Stokes equations can then be re-formulated using these mean flow

variahles. This Revnolds averaging procedure introduces the mean of teres




involving fluctuating quantities. The Reynolds stress components
;—Gsz are the most common terms of this tvpe. In order to solve the
averaged form of the Navier-Stokes equations, ''turbulence closure' must be
achieved by suitably modelling these additional terms. This approach to
turbulence has led to models which introduce auxiliary relationships ranging
from algebraic equations to several partial differential equations. These
models are commonly categorized and are now summarized according to the
nunber of additional partial differential equations which comprise the model.
The algebraic or zero equation models have their origins in Boussinesqg's
(18) eddy viscosity hvpothesis and Prandtl's (19) mixing length model. The
local turbulent stresses are assumed proportional to the local mean flow
strain rates with the proportionality constant defined as an equivalent
or eddy viscosity. The eddv viscosity models of Cebeci-Smith (20Q), >ellor-
Herring (21), and Patankar-Spalding (22) represent this approach. The
boundary layer in each method is divided into an inner near wall laver and
an outer wake laver with separate expressions for the eddy viscosity co-
efficient. In the Cebeci-Smith and Patanker-Spalding models the inner mixing
length varies as a linear function of the normal distance from the wall modi-
fied with a Van Driest (23) laminar sublayer correction. The Cebeci and ellor
models both base the outer length scale on the displacement thickness while
the Patanker-Spalding model uses the boundary layer thickness directly.
These models have been successfully extended and applied (24) to a wide variety
of boundary layer flow geometries involving compressibility, heat and mass
transfer, and curvature effects. In addition, the mean flow models are
computationally efficient. Launder and Spalding (25) point out, however,
that these models predict a vanishing eddy viscosity where the velocitvy
gradient is zero and have not been successful for large separated recirculat-

ing flows.




The one equation turbulence model introduced by Prandtl (26) is an
extension of the algebraic technique. 1In this approach the solution of
the partial differential turbulent kinetic energy equation usually provides
a local velocity scale given by q: = G;GZ- where summation is implied.
The length scale L is prescribed by an algebraic expression as before. Terms

involving fluctuating quantities other than q must still be modelled.

Glushko (27), Mellor and Herring (28), and Wolfshtein (29) model the gradient

diffusion term -((u'k p/ ) +u' (u'i u'i )/2) with a gradient of q given

k

NS K . 2 ¥ N
as &Q N k(g /2) where 9

the eddy viscosity. The Reynolds stress is related to the mean flow as

is a specified constant or function and -, is

in the alpebraic approach except that the eddy viscosity is assumed propor-

tional to qlL. Bradshaw, et al (30) model the gradient diffusion term with

an expression G q~ Qk where G is an empirical constant or function and Qk '

is a velocity characteristic of large eddy motions. They also write the i

Reynolds stress directly as a function of q in the rorm Ttij=Aij qg”. In !
each model the iscotropic dissipation is modelled bv a form q?/L. Nee and
Kovasznay (31) use a rate equation for the total viscosity X = . + £,
in place of the kinetic energy equation. They formulated expressions for
the generation and dissipation terms involving various constants and
the length scale. Launder and Spalding (25) observe that the one differential
equation models require a moderate increase in computer resources but do
not in general provide more accurate results than the results obtained from
algebraic methods.

Kolmogorov (32) introduced the somewhat more complex tvpe of turhulence
model which uses two partial differential equations. A form of the turbulent

kinetic energy equation provides a local velocity scale. The local length

scale is obtained from a second equation. Ng and Spalding (33) formalized

6




this approach by introducing the energv-length equation derived by

Rotta (34). Thev also used the Glushko closure model in the turbulent
energy equation. This :lass of two equation models is named the k - kL
turbulence model where the eddy viscosity is proportional to kl L. Saffman
(35) has used a transport equation for the mean vorticity . together with
the turbulent kinetic energv. The eddy viscosity becomes proportional to
k/. in this k - . class of closure models for turbulence. The local length
scale is assumed to be proportional to kb/u. Wilcox and Rubesin (36) have
modified this approach for compressible flows and generalized the con=stit-
utive equation. Jones and Launder (37) use a transport equation for the rate
of dissipation of turbulent energy © along with the turbulent kinetic
energyv equation. Glushko type closure models are assumed for the terms in-
volving fluctuating quantities in both equations. This k - < class of two

3/2

equation models has a local length scale proportional to k /7 with the
eddy viscosity proportional to k:/i. The two equation models have been
applied to various loundary laver and free shear laver flows with a variciy
of constants and closure models. The two equation models require signifi-~
cant increases in computational resources and have not led to a model of
universal applicability (24,25).

The search for a more general turbulence model has led to the use of
the transport equations for the Reynolds stresses. In this approach the eddv
viscosity concept is discarded. Closure models, however, are still requirced
for the terms containing fluctuating quantities other than the Revnolds
stresses. Donaldson (38) introdu. closure models which express the

fluctuating terms as functions of the Reynolds stress and chosen length

scales. Hanjalic and lLaunder (39) introduce closure models which use

the Reynolds stress and retain the equations for turbulent kinetic energy




k and turbulent dissipation <. Only cases with the simplified two-
demensional boundary laver approximations have been investigated. The
extensive computational resources and initial state of development of these
models preclude this type of approach from practical consideration as a
turbulence model for a complex flow field computation.

Theoretical turtalence models of further complexity have appeared.
Kolovandin and Votutin (40) introduced a statistical theory where additional
equations are obtained for other correlations of the fluctuating quantities.
Ferziger (41) took a meteorological viewpoint of turbulent flows by numeri-
cally simulating large scale eddies while modeling the small scale structures
with an eddy viscosityv technique. This approach is a first step toward
numerically solving a turbulent flow field with the instantaneous equations
of motion.

The review of avaiilable turbulence models provides the basis for select~
ing a suitable approach for use in the numerical solution. The algebraic
and the two equation eddy viscousity models appear to be realistic choices.

As previously reported (23), the one equation techniques yield unimproved

results compared with algebraic methods and at additional cost in computer
resources. The two equation methods regquire the solution of additional partial
differential equations. In these methods, terms involving fluctuating quanti-
ties, except the Reynolds stresses, must still be modelled using additional
coefficients. For these reasons, the simpler algebraic eddy viscosity technique,
which requires considerably less computer resources, is emploved. 1f the
physical phenomena associated with separated adverse pressure gradient flows

can be included in the turbulence model, then the accurate calculation of the
aerodynamic characteristics may be accomplished with an algebraic technique.

A survey of the previous research involving numerical solutions of

the Navier-Stokes equations for flow over airfoils estahlishes the pre-




diction level of computational methods and also reviews the numerical
algorithms, The grid generation technique and turbulence model emploved,
when applicable, are also included.

Early numerical solutions of the Navier-Stokes equations for flow over
airfoils ased the vorticity-stream function formulation with an automatcd
grid generation technique (4). Walker (42) applied the method to the laminar
flow over a flat plate and compared the numerical solution with Blasjus'

(43) sclution. Thames (44) used body-fitted coordinates with the vorticity-
stream function approach and solved the Navier-Stokes equations for various

bodies in doubly connected regions. He obtained solutions for the flow over
airfoils at chord Revnolds numbers less than 104. Problems mainly attributed
to wall vorticity developed for solutions of airfoils at angle of attack. :

Mehta and Lavan (45) also used a vo ticity-stream function method
in studying the laminar starting vortex and separation bubbles for impul-

sively started incompressible laminar flow over a Joukowski airfoil at

e e P

Reynolds numbers less than 104. They used three point backward time
differences and centered spatial differences. The computational grid
was obtained through a conformal transformation followed by a radial
stretching transformation.

Reddy and Thompson (46) applied an integro-differential, vorticitv-
velocity field method for the solution of incompressible flow in doukly
connected regions. Backward time, centered spatial (BTCS) differences
were applied to the Navier-Stokes equations. The difference equations
were solved using successive-over-relaxation (SOR) iteration. They
also employed the zoordinate mesh attraction technique with a time dependent
expanding mesh system. Symmetric airfoils at zero angle of attack

with a Reynolds number less than 106 were considered. At the higher

Reynolds numbers, the calculation of surface vorticity required a lTargye nun-




ber of grid points on the surface which greatly increased the required
computer time. A steady state sclution was not obtained.

The vorticitv-velocity field formulation has bheen applicd b Sankar
and Wu (47) to the case of incompressible laminar flow about an oscillatiny
airfoil. They used a 12" thick Joukowski airfoil at a keynolds nurbor of
1000. Triangular finite elements were constructed near the airfoil surface
and a rectangular mesh was used awav from the airfoil. & conformal trans-
foruwation was used to map the airfoil in the physical plane onto a unit circic
in the computational plane. Sankar and Tassa (48) investigated this sarec
prohlem withi a compressible flow tformulation orf the MNavier-Stoves chunticon-.
Thev used a conformal transformation followed by an algebraic radial stretciin,
transformnation, The alternating-direction-implicit (ADT) {inite difference
method of Brilev and ™Mclonald (49) was used to ohtain solutions for hevnolds

)
numbers less than 107 and a “ach number of 0.2. In a separate iresearch
effort, Supavanar and Wu (50) attempted to use a two equation k= turbu-
lence model with a vorticitv-velocity formulation. A conformal transforma-
tion for a 12 percent thick Joukowski airfoil was ured., They experienced
difficulties in obtaining a converged sclution even 2fter ¢ight hours of
CYBEr 74 CPU time were expended. Variations for both 1lift and dray of the
order of 50 percent occurred.

The use of the primitive variables of velocity and pressure for
incompressible flow was introduced by Harlow and Wolel (51) in the
explicit forward time, centered spatial (FTCS) Mark-and-Cell (0 methool,
They included a Poisson equation for pressure which is obtaincd by taking
the divergence of the momentum equation. Ther alen found that the velocity

divergence terms in the momenturn equations were roeqguired for the pressure
q ! i

field calculation. Hirt and Harlow (520 further developed the noethod.

Hodge (53) considered the casc of saminar incorpressihle viscou. *low tor

an airfoil at angle of attack. He used a form 4 the Tlorp i, o2 al (o

e




body-fitted grid transformation and applied an implicit BTCS differencing
method to the Navier-Stokes equations. The svstem of difference equations
was solved with SOR iteration. Various methods of calculating the pressure
field were investigated. Hodge concluded that the momentur equations should
retain the velocity divergence terms and that a Poisson pressure equation
should be used to satisfy continuity. Ghia, Hankey, and Hodge (54) applied
a Poisson pressure equation and the primitive variables form of the Navier-
Stokes equations to study incompressible driven flow in a square cavit:
for Revnolds numbers under 1000. They used an alternating-direction-implicit
(AD1) finite difference technique for the momentum equations and SUR iteration
for the pressure equation. A Neumann boundary condition derived from th
normal component of the momentum equations was employed to compute the wall
pressure.

The Poisson pressure equation has been further examined by Chien
(55) for internal flows. He observed that the calculation of pressure
by direct integration of the momentum equations can be inaccurate when
large velocity variations are present. He found that forms of the
pressure equation were more suitable for computing the pressure field
near boundaries. Recently, Hodge, et al (7) applied an implicit backward
time finite difference method with both upwind and centered spatial
differences to the Navier~Stokes equations in primitive variables form.
A Poisson pressure equation was used to obtain a solution for laminar
flow over airfoils at angle of attack with a Reynolds number of order 105.
The solution contains a large oscillating separated region which gives
approximate trends in lift but very pnor agreement with available drag data
(56).

Farly numerical Navi r-Stokes investigations of turbulent flow over

airfoils considered two-dimensional transonic viscous flow at small anple-

el Sttt + e, 5




of attack. Deiwert (57) applied MacCormack s explicit method (5&) with
a 50x38 rectangular based exponentially stretched mesh. Hc¢ used 20 uni-

formly spaced points to define the upper airfoil surface and imposed the

Neumann boundary layer condition dp/on = 0 on the surface. Steger (59)
used the implicit Beaw-Warming method (60) with a 71x33 grid obtained frou
a modified Thompson transformation (4). He calculated the solution on tho

branch cut with a linear extrapolation procedure and evaluated surface pres-

sures using the momentum equations for the direction normal to the¢ surface,
walitt, et al (61) applied the first order method of Trulio (A2) coupled with

a boundary laver technique used near the airfoil leading edge.  Thev used o

130x68 mesh svstem but did not capture the full suction pressure on the upper
surface near the airfoil nose. Each investigation used a Cebeci-Smith (£3)
type algebraic eddy viscosity model and the Reynolds averaged compressihle
Navier-Stokes equations.

Recently, Shamroth and Gibeling (64) used the Brilev-Mchenald

(46) implicit finite difference formulation with a constructive tvpe
81x30 grid system to compute turbulent flow over an airfoil at an an.l.
6 . ; .
of attack of 6 degrees and Reynolds number of 10 . Thev first triecd
a two equation k= turbulence model but experienced convergence problems
near the leading edge and far field flow regions. Thev reported obtaining
large or negative values for the turbulent viscosity in essentiallv
laminar regions. The turbulent kinetic energy equation with an algcrratcalls

prescribed length scale was then used. Major discrepancies occurred for the

mean pressure distribution solution in the suction peak and trailing odoc
regions of the airfoil surface. They also noted that the constructive
grid technique caused a crossing of grid lincs of the same farily for

highly cambered airfoils.

The examination of existing numerical solutions of the Navier-Stokes




equations for two-dimensional flow over airfoils reveals Reynolds nurber

and angle of attack restrictions. As a result, numerical Navier-Stokes
methods for the accurate computation of the flow field and resulting
aerodvnamic characteristics for an airfoil near stall are unavailable. The
development of such a numerical method for solving incompressible two-dimen-
sional turbulent flow over airfoil sections near stall does, thereforc,

constitute a significant contribution in computational aerodynamics. The

fulfillment of this research goal requires the formulation of an adequate '
turbulence model for use in both leading and trailing edge separated repion-.
The far field boundary conditions for incompressible flows rust also bo
examined. "
( The selection of a suitable numerical approach for incompressitle i
b
J turbulent flows i~ based on several considerations. An implicit tecimijue
' is preferred because of the required small grid spacing near the body sur- ?
face necessarvy to resolve viscous stresses. Stability criteria of expl T
methods would impose a small time step restriction as a result ot the orid
size.  The nunerical method should be capable of predicting laminar 1o

| for Revnolds numbers approaching turbulent {flow conditions since regions o

I laminar flow may occur.  The use of primitive variahles s readily extended
to three dimen~iovns and prevides for the direct caloulation of tle pre<-nur.

} field., These criteria are satisfied bhv an implicit Yinite difforence pro-

cednure developed by Hodge (03,7) which uses pricitive varial loo and sucve oive -

over-rela=ation iteration.  The implicit firite difference metio Doie o lo,

? in this investigation.

he rerainineg sections of this rescoarch oftory dive oo the to i

wploved in achieving the defined rescarc) coal. 10 e tion 0] e b e
the Thompson nunerically generated hodv-fitted coordinate ~o ter 1 do it

womethods of attrdacting grid ines to o the bl carfase ary et e o




surface points are also discussed. The governing equations for incom-
pressible two-dimensional turbulent flow in primitive variables are
presented in Section III. Boundary and initial conditions are discussed.
An algebraic eddy viscosity turbulence model formulated for adverse
pressure gradient separated flows is described. An algebraic type of
turbulence model has been chosen because of the previous computational
successes for other turbulent flow problems and the definite computational
fficiency obtained by this approach. The method for evaluatinz forco
coefricients exerted on the body by the flow field is then discussced. i
numerical techniques used in obtaining a solution are presented in Scoticrn
IV, First, the finite difference method for numerically gencratin: tia
grid is given. The Navier~Stokes equations are then written in finite
difference form. The numerical method used to implement the boundar. and
initial conditicns is described. The computational procedure for intreducing
turbulence is next discussed. The {inite difference and nuncerical inte-
gration techniques for calculating the force coefficients are then presented,
The forral discussion of the numerical solutions and comparisons witi, crjeri-
mental data are given in Section V. The conclucions derived frorm thi: researd!

work and recommendations for future work are set forth in Scetion Vi,




SECTION 11

R COORDINATE SYS7ie

In this section the technique is described which numericalls pencerates

body-fitted curvilinear coordinate systoers as previously doveloped T Giong

) Thames, and Mastin (4,9, Coordinate lines dre attracted to b, Vo0
surface with a method introduced by Hodpo (7Y. 0 i distribtution o orld
points which define the hodv surface is discussed.

Ao Transtormation
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contours “h and C et artitrary stape Ixoto be transfornod inte oo
x
tangular Joraic N as shown in Vigure 1. The ceneral transtormation o
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Partial derivatives are transformed using the chain rule and inverse
transformation relations. For a sufficiently diffeientiable function ¥

of x and y, the derivatives transform as follows:

w®

fo=(v_ {,-v.£)/] !
fo= CGx £+ x.1)/J (%)
Higher order derivatives are similarly derived.

The system of elliptic coordinate generating equations is chosen to
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with the boundary conditions on curve C '

T= (%, v) ro= e (7
T b ]
b
and on curve Cf
= (x, ) o= v &
AR c (
where ’H(x, v) and (%, v) are prescribed functions and " and Tpoare
L i ]
*® X
prescribed constants. The other two sides (1 and C, in the rectangular
regvion are transformed from the bhranch cut Cl - C,. The functions x(., ")
and v, ") and all derivatives are continuous across this cut. These
boundiry conditions insure that the body and the far ficld boundaries are
defired by constant * lines. The gencralized functions P and O are utilisdd
in attractiny the coordinate lines in various repions.
. . . - ~ ! g
The rectanwular grid system in the transformed plance is used fer the
computations. The mesh generating svstem, Fquations 6a and 6h, is tranv- :
formed to the computational plane and becones
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B. C(ocordinate Line Attraction
The resolution of viscous terms near the bodv surface requires o
fine mesh spacing in this region. The forcing functions T oand O are us=dd P
tooattract oand  lines, respectively.  In this work the © ling
is accorylistod by spocifving the boundary condition tunciion | (v, ),
The » line spavine is adjusted through the use of the O function proposed
b Thameaon (L) and modified by Hodge (7)
K()
o, Yy = = 7 Ak(r\ exp. =D(D - ] (1,
: [
k=1
!
where Ak are the amplification factors, D is the damping facter, K is the
!
number of terms, and . = (k- DY The amplification and dampine Yactors 5
N [
!
are determined by reguiring that the tangential velocite v be o linear ‘
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funvtivn ¢f . 1In this case, the second and higher order derivatives with i
i

Tespect to 0 beconme zero thercehy minimizing the truncation errvr of u in

the transiorred planc.

Hodeo (7) has developed a technique which approximatels satisfies the

ahove criterion.  The required point distribution on a 7 line ig determined
using Bluasius' flat plate boundary layver solution. The similarity series
solution (430 i- gliven by

- ntl
n n 1 ) 3n+2 (

o
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AN

where the similariiw variable -~ = ~»'u / =!'" . u_ is the edge weundurs
o i

laver velocity and . is the kinematic viscosity.

16 with respect to 7 gives an expression for the tangential velocity u in

¥,

the boundar: laver

c . n+1

. . B v K

Fr0°) = __LUI_ = T (—‘\)ﬂ N 1 :Jﬂ‘*'] (17 11
e n=0 (3n + D! :

The first four covefficients of the Blasius series are Cq =1, C, =1,
\,

C

"

"

11, and C.3 = 375. Also, from Equation 17 the factor il is related
to £ by « = £Y(0) which is 0.33.0A. Equation 17 is conveniently written

u

u
©

£1(7) - = 0 (1o

¥

Then, for a given 7 line (which determines x) and a selected nunber of

points in the boundary laver, values for - which give equal tangential

velocity increments are calculated from Equation 18. The corresponding P
v distances are computed by using the definition of - which vields .
i
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vo= ’('»4\—“ (1w i
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The second part of the boundary layer grid line attraction technique
involves calculating values of Ak and D which when used in 0 pive the

desired n line spacing. Near the body surface, the ", transformaticn

equation, Equation 6b, can be written

Tuy) = QCh ) (20)
vy
b

(
where variations with respect to x are neglected. If the expression feor

the forcing function Q in Equation 15 is substituted into Equation 20,

then Equation 20 can be integrated with respect to r to obtain

=

T

]
I~ ° X
(3—}_) = poq 2(AL /D) texp{-D H(", 7)1 + H(sgn(", - ), 0.)

k—_—
[1 - exp(-D' " - o )1 (oD

where the difference function H and sgn function are defined as follows

0 if o<
- 'k
H(r, v ) =
k no-T if r>o
k k
e s
1 if " P >0
sgn(fk -T) =
-1 if n, -1 <0
3

lal
Now evaluate the expression for (d~/dy)”~ , Equation 21, at = = 0 and

N as T A7 which gives the approximate expressions written in Equations
nax

22 and 23, respectivelwv.

2 . K
NC SN . (22)
dy” r=0 D k=1 k
g 2 - K
! Yy = =( 7 -0 - - 9
Z(dy) = - A D( ) Ak) exp[-D, maw > "k ) (23)
: max k=1

The derivative in Equation 22 can be evaluated using the v values obtained

previously. The derivative in Equation 23 can be specified bv choosing an
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"max based on the placement of the outer boundary. Then Equations 22
and 23 can be combined to give the following equation for the damping

factor D:

With the damping factor D known, the analytic expression (Equation 21)

can be evaluated on each interval of successive vy values obtained from

the Blasius solution along with the last It interval near the outer houn-
darv. This procedure gives a system of K equations for the K unknowns

Ak which are then solved. Therefore, values for the amplification factorz
and damping factor are obtained at each ¢ line which are used to compute

a body fitted grid svstem.

C. Bodv Surface Point Distribution

The bodv surface can be defined by either a given set of points or
by an analytical expression. The body surface grid points can then be
determined by either interpolation or evaluation of the analytical expres-
sion.

The NACA 0012 airfoil section is used in this investigation. This
airfoil has been used in several investigations (65) and is an AGARD (66)
designated test airfoil section. The NACA four digit series airfoils
have an analvtic description of the body surface given by (67)

. N 2 4.
v (x) = 5t:0.2969x° ~ 0.126x - 0.3516x" + 0.2843x3 - 0.1015x% - (23)

where x is the distance along the chord (nondimensionalized by chord), yt
is the upper surface ordinate, and t is the thickness given as a fraction
of the chord. For the NACA 0012 airfoil, t = 0.12. The thickness function

given by Equation 25 does not close the body at the trailing edge (x=1).

-



A circular arc is used to close the body. The arc is constructed to have
a center on the chord line, to have points of tangency with the upper and
lower airfoil surfaces near x = 0.99, and to intersect the chord line at
x = 1.0,

The distribution of grid points on the airfoil surface is based on
both resolving streamwise flow field gradients and defining the surface
curvature. These criteria require the clustering of points in the nose
and trailing edge regions of the airfoil. The following analytic trans-
formation is used teo obtain the desired clustered distribution of =

abscissa values

A3
~ A Al
tanh (3552 - rann(- 29
x = S —= (2
tanh(£~i§él) - tanh(- %%
where z represents the input set of equally incremented values (0 = z < 1),

X represents the clustered set of abscissae (0 < x i_l), and Al, A2, and A3
are arbitrary constants. The constant Al determines the center of the
hyperbolic function and is used to cluster points toward one end. The con-
stant A2 varies the slope of the function at the center and thus determines
the distribution near mid chord. The exponent A3 can also affect the

clustering of points at the ends. If A3 > 1, more points occur near x = 0;

while if A3 < 1, points are clustered more at x = 1.
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SECTION ITI

GOVERNING EQUATIONS

The time dependent incompressible viscous Navier-Stokes eguations
for two-dimensional flows are presented. The primitive variables of fluid
velocity and pressure are used. The Reynolds averaged Navier-Stokes equa-~
tions are obtained. Boundary and initial conditions are given. A modified
turbulence mod.! based on Prandtl’'s mixing length theory is described which
expresses the Revnolds stresses in terms of mean flow quantities for
separated adverse pressure gradient flows. An expression for the force
exerted by the flow field on the body is derived. The equations and
boundary conditions are transformed by the curvilinear transformation

discussed in Section II and written in the computational plane.

A. Basic Equations of Motion

The time dependent Incompressible XNavier-Stokes equations, which
describe conservation of linear momentum, in orthoncrmal indicial nocation

are given by
W

N

3 7 = b 5 2
=t ,j(\jvi), 3,p+ oo, T n

i j 3i

where .» is the fluid density, p is the fluid static pressure, Vi are the
components of fluid velocity, and Tji is the viscous stress tensor. The
subscript i = 1 corresponds to the x dirction and i = 2 to the v direction.

Conservation of mass for an incompressible flow is given by

83, V, =0 (28
J

Turbulent flow is intrcduced by assuming that the flow quantities can

be described in terms of mean and fluctuating quantities in the form

1
vo= T+ v =p+p' T,, = 1,, + 1'.,
i it Yy P=pPTP ji 31 3i

ro
(3]




where the bar (-) indicates a mean quantity and the prime (') indicates a
fluctuating quantity. In this form, a time average of a fluctuating
quantity is assumed to be zero. Substitute these expressions into Equa-
tions 27 and 28 and time average each equation to obtain the Reynolds
averaged Navier~Stokes equations for two-dimensional incompressible

turbulent flow given below.

3
<t

i . - - - - . N
+ 5. (V, V,): = <3,p+ 5.1, -2V, V., (2a)
o5 (V5 Vy) P T i

[9%)
-

. V. =0 (300)

v 1
The term -0 Vj Vi i1s known as the turbulent Reynolds stress. The incom-

pressible form of the constitutive equation which relates the stress as
a function of the rate of strain is now introduced as
T..o= w(h, Vo4 5V, 11)
jp= FOy T T (31,
where = is the dynamic viscosity coefficient. The turbulent Revnolds stress

is similarl; modelled with an algebraic eddy viscosity approach based on

Prandtl’'s mixing length theory. The corresponding expression is

-0V, VvV, = (5, V, + 353, V,) (32)

where Sy is the turbulent eddy viscosity. 1In this wav, the additional

] ]
unknown -ij Vi is expressed in terms of the mean flow variables. This

turbulence closure requires, however, an expression for the eddy viscositv.
Models for the eddy viscosity are examined in Section 111 C.

The expressions for the viscous laminar and turbulent stresses,
Equations 31 and 32, are substituted into Equation 29 to obtain the

simplified turbulent incompressible Navier-Stokes equations

av Lo+
1. -, oy ¢ 4 o

O, T e, o, . R . ! k
o iP o RS i3 (33)

— 4+ 5.(V. V.,
o 'J(VJ Vl)
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The following nondimensional variables are intruduced:

‘

where ¢ is the airfoil chord, v 1is the frecstrear velocity, and p is tle
freestream static pressure. Substituting these nondimensional variables inte

Equations 30 and 33, with the time average and nondimensional symbols under-

stood, gives the following set of equations

i - 1
_— o A = < +
- + j(\j\i) i P

(.0 v, 4+ - v (36)
Re 73 J 1 ij]

where D is the divergence of velocity and Ret is the turbulent Revncelds

number. The turbulent Revnolds number is defined as

Re = —R& (37)
o M
1 + -
where Re = .UTC/;, the Reynolds number.

Another simplification would be to apply Equation 35 in Fquation 3&.
The divergence D is contained in both the convective and viscous tervs.
Although analytically correct, the velocityv divergence is in gencral not
identically zero in a numerical resultr. The approach us<d by Hodpe (53)
and developed bv Harlow and Welch (51) is to keep the divergence I' in the
convective term as a correction term. This approach is used here so that
the viscous divergence term is set equal to zero in Fquation 34, Sincc the
convective tert is important throughout the flow field while the viscous

terrnn is important onlv near the airfoil surface, it appcars reazonable to

drop the viscous divergence tern and keep the convective diveryence terr

R SRR




as a correction term. Thus, the appropriate set of equations becomes

i

L ) = -3, p 4= (3.3,V,) (38)

+ o (V.V
SOV i Re

D=3V, (39)

The calculation of pressure in the primitive variables formulation
must be carefully handled. The pressure does not appear in the continuity
equation nor does a time derivative of pressure occur. Two approaches
have been extensively used to overcome this difficulty. Both techniques
compute the pressure by utilizing the velocity divergence D as 2 correction
factor. The calculated pressure is made to satisfy continuity. The first
method, introduced by Chorin (68), computes pressure using an iteration
procedure with D as the correcting term. The expression is

p(st) () ‘D (40)

where s denotes the iteration number and : is an acceleration parameter
which can be either a constant or can be related to a successive-over=~
relaxation (SOR) solution of a Poisson equation for pressure as shown by
Hodze (53). The second method uses a Peisson equation for pressure derived

from the divergence of the momentum equation expressed in Fquation 38

The form of the equation is shown in Equation 41,
D =7V «R-""p (41

where R represents the convective and viscous terms. If the R exprescion
is algebraically simplified with D used wherever possible, the following

simplified incompressible Poisson pressure equation is obtained

0 i
D= = (ah)  + (WD) + u” +2vu + v +ud + D
t x v X Xy v b v
o+ ) - G+ (42
Ret X% vy XX Yy T
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This equation contains both spatial and time derivatives of the velocit:
divergence as well as the fluid velocities and pressure. Again, continuit:
is used as a correcting factor for calculating prossure. Further simpliti-
cation can occur if small variations in the velocity divergence are assumcd,
In this case, the spatial derivatives of D are set to zero in Fquation 42

and the result becomes

- (pxx + pyy) (4750

D + (u2 + 2v.u + v2)
t X Xy y
Hodge (53) used both Equations 42 and 43 and found no apparent differcvnce
in the flow field sclutions for his case of laminar flow. Also, Chorin's
method of Equation 40 is related to the pressure Equation 43, Hodye (5%
showed that the Chorin technique is approximately related to a solution
of the Poi:isson pressure equation using SOR iteration on a coarsc grid of
twice the spacing. The Poisson pressure equation technique is chosen
for the interior flow field because of the increased coupling which occurs
in a finite difference representation. The body surface pressure, how-
ever, is calculated using the iteration technique of Fquation 40. Here
mass conservation is imposed directly and the difficulty of evaluating
the Laplacian of pressure at the bod: surface in Fquation 43 is avoided.
The following set of equations taken from Fquations 38, 130 and 4%

becomes the system used for the solution of incompressible turbulent

viscous two-dimensional flow over airfoils:

1 N
u +uu t+vue +ubh = =p o+ = (u_ +u ) G
t X v X th X% v
v +uv, + vv 4+ VD = -p + ~l~ (v + v ) (a5
t X v v Re XN vy
2 el
D 4+ u +2vu + v = —(p + p ) (e
t X X v v X vy
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The pumerical solut
forning the computations
vilinear transformation
the equations arce trans?
equations, Equations 43

in Section 11 and Append
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. Boundary and Initial Conditions

The complete definition of the flow problem requires the specitication

of sufficient boundarv and initial conditions. The Navier-Stokes cquation

arc coupled, nonlinear, first order in time, second crder in space, ellipti

partial difrerential equations. The e¢llipric nature of the equations for
velocity requires boundary conditions at eacih boundary,  The Uirst order

derivatives of pressure require a boundarw condition descritiin: the froee-

strean pressurc.  The time derivative terns require initisd
velocits and pressure throughout the flow rield.

Boundory conditions on the airtoil surface are con-dderdd tiroo, U
continuun no slip boundary condition for a viscous fluid at o stationa
solid surtace is imposed on o the tangential velocity at the surface.s v

allition, the norma! component of velocoity must he zero Yor a stationar

surtface with no transpiration.  These conditions are met by tho =specificat

ol the Dirichler boundary conditions

wWhote the sul s ripe bhodenctes bod surface, Lhe Pres=sule O the airtoil
surtace s ocompured, ansd oo bods boundars condition s rejuired beothe Ui

derivative pressure lerr s,

oo tur ficld houndary conditions for velocitns and pressure spec i
the frecstrear flow ticlde Tet rbe a position vector dn the Tloa Ticld
witt o the origin at the airfeil vid-chor!, Ther, a- the dictance 0 tron U
alryod] besore s Garce the fluid velooitr and prescure approact. thedr
nendizens fonal freestrear values as Ho Tlowe:

Tin (ul + v = cos o+ =in ] (

r -

Lir v =

i
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whieTe ie the ancle o Gltacn of thoe airtoll chord with respert to U

treoesUTuvd..

The first order tine derivative terms require initial condition- tor

the velocity and pressurc in the field. Frooo o theorctical viewpoint,

3 B . e ] szt i- N ¢y . N b i : .. b Yoy HEREERC N PR P
Sitoe e gt tle Sleudt o soautio 15 deslled, anr oot ngaeg DIt Spe it
cation o velocitt and pressure (=sublect to the prescribed bomndare o conditie:n o

is pe | SoB SRS & SR

e houndars conditions and initial conditions are als-. transiersed te

vy

the computationa! planc. Ghe values tor each conditicc rercin unallered and
are theis oot repeated hores The decetion in o the tran-rorned plave doeponds oo
the speciric transiornation (hosen 1o penvrate the computaticon.? prid. T
. . Yo . v . . e R ,
ratter io discussc! in Scction TV where thie numerical procedures ore descoritoed.

Wwosensitivity anaivsis of the outer bounduary location is addressed in

Turtylonve medelling is of considerable interest in thecretical, experi-
mental, and computational rescarch word.  Many acrodvnanic problens of
praviical interest contain regions of turbulent {low. Several models duve
been developed which varv in complexity frov Prandti's nixins leo- 0 Ooor

to techniques emploving auxiliary differential cqguation for mi-

viscosity coefficients, and turbulent kinetic cueroices.  The aceuracs of
cach model varies with both the geometry and the flow Ticld guantity ueol 1oy
comparing results.  In computational work, the abilils to tran-iate the tur-
bulence model into numerical procedurces and the corputer Tesourfve. Foo it
are additional factors which need to be con-iderdd.

In this investigation, turbulence 1s modellod with an alvoiraie o0

viscosity appreach baced on Prandtl's mivine lengtd theor.. o Vo i

concept of this method i1s that the turbulent Kewneld  wrre s ~ U




can be related te the strain rate of the amean flow in a wav analagous to
that for laminar viscous stresses. The fundamental expression was previously
introduved in Equation 32 to ebtain the simplified turbulent incompressiblc

The algebraic eddy viscosity has

savier-sStokes equation, Kquation 33.
been uscd extensively in obtaining numerical s dutions for o varicte of
acrodyvuanic problems (24,25,69).

The eddy viscosity model for turbulent flow with zero pressure eradient

near a solid surface, which incorporates the modifications of Ceboci and

, Van Priest (23, and Deiwert (570,

is piven below and then discuss
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The taneential surtace direction is given by % and the normal surfac.

direction by v, The inner and outer eddy viscositics,

and somede !

the Taw of the Wall and law of the Wake (70 regions.  The inner mixin.

lenvth is assumed proporticnal to the distance v from the surface. k. i

the Von Harman constant. The Van Driest (2% dampine factor nodo b

stres=s and A i !

the laminar sublaver region where ", is the surface shear

b

.

the decayv constant.  The di-placement thickness detined by Paouation o

1

1
is the outer laver lenyth scoie.  The inter-ittency factor ., dociro s I
in Equation 58, models the decrvase of the turtalence intencity Sres

fully turbulent region to the inviscid re, ion awa. fror

The intermittency is a function of the norral distan.

the hods wurra, . ’
!
froe e e ;




nonditnensionalized by the local boundary laver distance . The local
edre boundary laver velocity u is the outer laver characteristic velocits,
15 k A . g
The standard Cebeci=Smith (3) values for the constants are k, = .41
1
k, = .01r~, ant A = 24, Continuity of the eddy viscosity digtribution i

3

achicved bvoswictchine from the inner to the outer rodel whenever virst g

. 1
LSRN U SN .
o

Kecentlv, Jobe and Hankew (71) compared this eddy viscosity model

b Fquations 95 through 5% with experimental data for several constant

4
adverse pressure gradicont attached flows., Thew varicd the k]’ o,,oand &
parareter= in a numeric:l turbulent boundary laver progran until the =0lu-

tions matched the experimental boundary laver velocity profiles and =xin

friction covfficients. These parameters had substantially different valucs

v
=
fod
e

than the previ

v

cited values obtained for zero pressure gradicnt {lows. ¥

They found that when the flow encounters an adverse pressure gradient the

eddy visco-~ity parameters rapidly adjust to the values of k, = .65 and
Py
A = 52, The outer eddy viscosity constant appears to linearly dncreasc

cradicnt.

Loy

witi, distance measured from the start of the adverse pressure

Thus Jobe and Hankev (71) found that k., can varw from a value of .01AS to

values of .03 or greater given that the adverse pressure gradient e
for a sufficient lencth downstreanm.

The use of an eddy viscosity model similar in form to the one given

in Ehguations 55 through 59 for an airfeil at angle of attack requires

mination of the tvpical flow field characteristics.  The upper surface

| of the airfoil has a pressure distribution which includes a region of
pressure, the suction peak, near the airfoil leading edoe.  The suction poos

iz followed By oan adver: o pressure gradient resfon.  The pressure ora oo

tends to decrease a0 the “low recovers toward the trailine ¢dee . 70




turbulence model that is used for dn upper surface turbulent boundar  looor
5 . . P e .
should include the effects of this adverse pressure gradient. he inmor

eddy viscosity parameters, therefore, take on “he Jobe and Hanwen €711 valie,

- + . . . .
<. = .65 and A = 52 in this region. The outer eddr
of k, = .6 A 52 in this regi the outer edd

viscousion Jarireler

k, mav also change in the adverse pressure pradient region. However, tie s

rate of chanpe is affccted by the pressure gradient and downstrearn dis

The pressure gradient does decrease rapidly as the flow procceds downstrea:

Anyv tendency for k, to increasc is probably offset by the decreasine adversc

pressure gpradient.  Thus, the value of kK, is kept at the ecouilidrior volu

ediic viscosiry Dowith the dircussed adverse pressure craliont

modificativns I- now written in terrs of the nondimensional variables drsre-

-
IS
~

duced in Pauations 35 and 37.  All length quantities arce nondironsionali

with respect to the airfoil chord. The mean and nondimensional quarntitics

are henceforth implied. The eddy viscosity modcel hecomes i
i ) 3] )
—= = (w.vD) (Llh + v L (8 '
1 v >
i
o &
— = k,u . R (1)
2e
P 1 = ( Po) (ro
= - exp - — (u Poe )
[ ¥ ot vhb
FRY

T e oooand A are considered adverse pressure sradicnt perateiors,

The eddw viscosity model ruat also represent the phvsical characteristic

i Targe scparated recions which occur duving airfoil wtall. Trailin: ol




stall occurs when the turbulent boundary layer separation nmoves toward the
leading edse of the airfoil as the angle of attack increases. The pressur
distribution in a trai'ing edge separated region has small pradients (72).
This observation motivates another chanyg¢ to the eddy viscosity model. Tho
inner eddv viscosity parameter is relaxed back toward the equilibriur valuc

of .41. The separation point, which precedes the return to zero pressure prac-
ient, is selected as the point to start the expcnential decav. The following

relaxation form with distances nondimensionalized by the chord is used

“d
= A1+ (= . s g
f v 1 + B exp( ) s sy
r
(.5,
f =1 s s
d
I
where f is the relaxation factor which multiplies the initial value of kl,

el
k7., s is the distance downstream from the trailing edge separation point
1i 13 g 1% P ,

sS4 is the delay distance, s, is the relaxation distance, and A and B are

constants. The constants A and 3 are determined by applving the conditicns

2
= = =k B infinity wh is the
f 1 at s S4 and f klf/k1i as s approaches infinity where klf ig the
asvmptotic value of kl downstream. Thus, A and B become
2 2 -1
= = - AR
A klf/kli B =A 1 (AH)

Measurements of Bachalo (73) and Baker (74) in the trailing e¢dic¢ separa-
tion region indicate the presence of a lower but finite turbulent intensitw
when compared with the separated turbulent shear laver. The velocitv deriv-
ative terms in the inner eddy viscosity and damping factor expressions, Equa-
tions 60 and 62, can approach zero in a region near a velocitv inflection
point. 1In this case, a zero eddy viscosity is permitted in a turbulent
separated region which is contrary to the apparent flow structure. This same
zero eddy viscosity behavior can alse occur in the case of sheddine separation

bubbles from the airfoil surface. 1In order to prevent the appearance of




laminar regions within the turbulent, adverse pressure gradient, separated
flow field during airfoil stall, a limiting technique is employed. The inncr
eddy viscosity is prevented from decreasing in value as the normal distance
from the surface increases. This restriction simulates the uniform turbulent
intensities measured (73,74) in the trailing edge separated region. The inncr
eddy viscositv is further limited by imposing a condition of no decreasc
in the downstream direction. This limit provides for a finite turhulent
intensity in separated regions which mayv develop in the turbulent boundary
laver. The limit is initiated by obtaining the distribution of eddy vis-
cosity in the attached boundary laver near the leading edge of the airfeil.
This distribution :ic is compared with the distributions calculated by the
model at downstream locations. The outer eddy viscosity, which has no velocity
derivative, 1is not limited in any way. The "limiting" technique is passive in
the sense that the locally computed value for the inner eddy viscosity is used
whenever possible., Numerical experiments without the "limiting" technique
displaved unphysical results because the conventionally modelled eddy viscosity
is divergent. The inception of separated flow decreased the eddy viscosity
thereby causing futher separation. The "limiting" concept is necessary to
prevent this unphysical result.

The transition from laminar flow to fully turbulent flow is modelled
using the transition model of Dhawan and Narasimha (75). The expression for

the transition factor 7 1is given below

=1 - exp"- 412 (——) (67)

where x is the tangential direction coordinate on the bodv surface, X, is

the location where transition starts, and . = x. - X defines the

i}
(o8]
~
i~

distance required to r ~~-~d from [ = 1/4 to 7

Some of the e .pressions in the turbulent boundary laver eddy viscosity




model are conveniently expressed in terms of quantities in the transformed
plane described in Section I1I. The velocity derivatives in the inrer eddy
viscosity model are formulated by determining the tangential and normal

components of velocity, u and v respectively, to the body surface r = -

at a position

u(f, ) = cﬁu(?, r)y - clv(F, ) (%)

L) o= clu( L o) o+ cvv( L) (69)

where 1 and c, are components of the unit outward normal to the bodv sur-

face at position (I, ﬂ]) given by

¢ = v T ¢y =/

R
-

Then, the directional derivative definition is used to obtain the surfacc

normal derivative of t and the surface tangential derivative of Vv expressed as

N . . L ;
— = , o= v . .U - 3 DA 0
= cl()nu(/ 3 :»ur‘) + o fy, T XU S (70)
v : ~ - ~ ~ N -
—": = C2 (yr;\r f -y F\vr') - Cl (,\[ g\_': - )\r‘\v y) i /J (71)

which correspond to the u'V and vy derivatives of the Cartesian eddyw vis-
cosity model expressions, Equations 60 through 64.

The turbulence structure in the far wake is modelled with an eddy
viscosity expression similar to the outer eddy viscosity model in the tur-
bulent boundary laver. The model is based on the assumption of a self-
preserving, equilibrium turbulent wake with censtant pressure in incompres-
sible flow. The approach has been experimentally investigated by Narasimha
and Prabhu (76) who obtained the following expression

;w = ;k?'wo"w (72)

where wo(x) = max ‘U_ - u(x,v)" is the maximum velocity defect in the wake,
v
' is a half wake width defined where the velocity defect becomes one half

the maximum value, and k3 is a constant equal to 065, 1f the experimentally

35
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integrated value of the wake defect function is used, then Equation 72 can
be written in terms of the parameters of edge velocity and displacement

thickness similar to boundary layers as follows:

“w *

— = k,u & Re (73)

- 37e w

where u, is the nondimensional velocity at the edge of the wake, f: is the
nondimensional displacement thickness for the half wake as defined by Equa-
tion 64, and k3 becomes .0634, This expression has been utilized by Green,
et al (77) in an integral method for predicting two-dimensional incompressible
and compressible turbulent wakes of lifting airfoils. For an incompressihile,
constant pressure wake the momentum integral equation reduces to a statement
that the momentum thickness is a constant. These conditions exist in t

far wake of an airfoil. In addition, in the far wake the displacement d
momentum thicknesses become equal as shown by the experimental r. .ults of
Narasimha and Prabhu (76). Thus the far wake eddy viscositv is approximatel-
constant. The transition in the wake from the turbulent core regior. Lo the
inviscid freestream region on each side of the wake is modelled with the
intermittency factor of Equation 63 where ¢ is now the wake half width and

v is the normal distance from the wake center.

The turbulent near wake region mixing rates where the wall boundary
lavers merge and eventually become the far wake are not well understood from
either an analvtical or experimental viewpoint. 1In the flow regime under
consideration, a laminar boundary layver from the lower airfoil surface mixcs
with a turbulent boundary layer from the upper surface. An eddy viscosity
model similar to that used in the outer turbulent boundarv laver and the far
wake is used. Inouye, et al (78) applied the Cebeci-Smith (A3) outer laver
model in the near wake of a flat plate and obtained good agrecment for the

mean velocity profiles. They allowed the constant k, to reach twice to

16




equilibrium value of .0168 over a length of one chord from the trailing
edge. The computed eddy viscosity was still about 50/ low when compared
with experiment at the one chord distance. Later, Burggraf (79) .ompared
several turbulence models for various near wake flows and concluded that
the Cebeci-Smith model adequately predicted the mean velocity prefiles.

The merging of the upper and lower surface boundary lavers is modelled
with a simplified interaction hypothesis approach introduced by Bradshaw (80).
The two layers are initially allowed to develop downstream a distance WLl
without interaction. At this point the eddy viscosity is increased exponcn-
tially in the adjacent laminar boundary laver from a zero value te the far
wake calculated value Sy 2t @ distance WL2 from the trailing ec:v. This

v

eddy viscosity variation is formulated as follows

s - WLBV
© =1/2¢ 1+ tanh (8 /- )" s > WL
ow MLZ - WL1 1 (74
s =0 s ;AIHAl

where WLaV is the distance from the trailing edge to a locaticn hall way

between the distances WL, and WL, and s is the local distance from the

1
trailing edge. The coefficient 8 is selected so that - 0 at s = WLl
and ¢ = = at s = WL, because at s = WL, the hyperbolic tangent function
ow 2 2 :

becomes equal to 0.9993 while at s = WL1 it becomes - 0.9993. The edd-
viscosity profile in the turbulent boundary laver near the trailing edgc

is extended into the near wake.

D. Force Coefficients

The force which is exerted on the body by the moving fluid around thoe
body can be determined from the Cauchy integral equation for conscvrvation

of linear momentum applied at the body surface or on a closed path surround-

ing the body. The basic expressions for the force coefficients formulated




in the (x,v) physical plane coordinate system are given by Fquations D.1lu
and D.12b derived in Appendix D for an incompressible turbulent viscous {low.

Consider first the body surface where the components of velocity are

identically zero from the no slip boundary conditions. In this case, the

equations become

: = U/. -2 1o —+ 2 fu i 8 75)

; Cf\ = 2nyp + o (4n1 =t In, ( + Y ds (75

S
b

. 1 “u Ly v .

= = — 2 — — z S 1 36
Cfv V/ﬁ : _nzp + Re (_nl (vv * Gx) + R WV) ¢S (76

3 Sb 3 :

where the integration is over the body contour denoted by Sh' The first
term in each expression is the contribution caused by pressure forves while
the second term is the viscous stress contribution.

The force coefficients, Equations 75 and 76, determined at the body '7
surface can be transformed to the computational plane by using the relations
for the outward normal vector to an T contour, line integrals and derivatives

given in Appendix A. The transformed equations become

r
U{ max 1
C.. =2 vop = (ju + v.(yau - x.v a’ 7
= 2 vop g Gy, v (van - ox) @
‘min
4
max
C =2 \[“ -x p + 1 (v, o~ x, (v - x.v ) ad” (7e
fy 2 3 Re] T B £ o
min
where the no slip boundary condition which implies u, = v. = 0 on the body
surface is used. The viscous stress terms are further simplified by using
continuity at the bodyv surface and the vorticity ( x v) Pauation 4,14 on

the body surface to obtain
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Cf}' TR TR d (50)
£
min

where the vorticity on the body surface . is given by
= = (v, 4 xu )/ (81)

The corresponding mounent (positive counterclockwise) about a point P
located within the body cross-section with coordinates (xp, yp) is given
P

as

RN e Y]
<Y P

mMa s ,
Cap ==g[ (x - xp)(—2x,p ~ i:i—) - (v - yp)(fy,p - —E:—):df (=21
min

Next consider again the more general case of a closed path around
the bodv whose force coefticients are given by Equations D.12a and D.I1Zb.
Assume that the closed path is an ™ contour. Then, using the transformad
expressions in Appendix A for the outward normal vector to an * contour,
inteyrals, and derivatives, the force coefficients for the bhodv in terms

of quantities on a constant * line in the flow field become
[!

f max
A

~ ) )
C = Y 2vop 4 = Ju (T 4+ 2vT)) - w4 2vov ) 4 v (X )
fx . P TR T S A
min t
p mas
- v (xa0) 4+ Puluy. - v ) 47 - '{f f TR (>
I min
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max
f - 2 02 2 ) '
ny = =2x.p + RetJ [v”(~X€ + y 9 - v g_hik” + ?U) + U;(hf}f)
£ .
min
n F
p max
-u (xy )]+ 2vluy, = vx)D d - Tf j 2v ) did (84)
o] &
b min
where ., < 1 <n . The terms in the line integral represent in order
b — 'p — 'max

pressure forces, viscous forces, and convective outflows of linear momentun.
The area integral term is the time rate of increase of linear momentum con-
tained in the control volume bounded by the body "y, contour and the selected

ﬂp contour.

The corresponding lift and drayg coefficients are then calculated usiny

Equations D.13 and D.14.
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SECTION 1V

NUMERICAL NMELTHOD

The numerical methods used to obtain soluticns for incorpres: it e

turbulent flow over airfoils are presented. The nuserical tinit.

procedure which vields the grid transformation is {irst discusscd.

implicit finite difference method for obtaining approximate solution- to

the unsteady, incompressible, turbulent lavier-sStokes equations is newt

described. Numerical beundar: conditions and initial conditions are oo

sidered.  The numerical procedure for incorperating the turbulent edld

viscosity model is discussed. 7The computation of the force coefficient:

on the bodw is then presented.

A. G(rid Transformation

The numerical solution of the governing equations for the transfora

tion is carried out in the transformed or computational planc on a rquare

mesh (7, 7) svstem. The body contour (} and the far fic¢ld houndary (1
| :
become constant v contours (Figure 1). The far ficld boundary is usuall

used to approximate infinity in incompressible flow problems. Constant

P
nacea

contours in the physical plane are required to transforn to equi-«;

coordinate lines with unit step size in the transformed plane. The

contours in the phvsical planc is controlled by the set of c¢lliptic

The f contour spacing on the body surface and outer boundarw in the plosi
plane is determined by the chosen point distribution on each surface. b
constant  contours are also required to transform to equi-spaced coor-
dinate lines with unit step size in the transformed planc. Th line

are denoted by the subseript i with range ) P TMAY where TN Is the
of “ lines. Similariv, the © lines are identified by a subscript 1 with

spacins i

et

»
.
|
ion i
|
Cal :
f
\
.
i
i
nurtoo
Talyyme




l of 1 - 7 o IMAY where JMAY is the number of © lines.  The values § =1
i and j = IMAN are the bodv and outer boundary surfaces, respectivel.,
The constant § lines i = 1 and | = IMAY denote the branch cut in the

phvsical plane and arcv therefore identical.

The governing elliptic transformation equations, hquntions Ya and @b,
are written with finite ditfferences in quasi-lincarized tors for the loo-
ation (i, j). Second order accurate central differences given in Appendin B
are used for evaluating each term. The highest order derivative contain:
the unknown at location (i, j) while the transformation coefficients, which
contain lower order derivatives, are evaluated with previous values ot the

variables x and y. The difference expressions are given below where the

indices i and j are understood when omitted,.

T TS R U D S C U R T S T T S U R S FUR AR ,
R (43
+ v(x gt xj~1) + ;»r{(xi+l - xi_l)P + (Xj+] - xj_l\Qf /20 + )
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The 1 index near the branch cut is adjusted as follows:

when 1 = 1 then 1 ~ 1 = 1¥as - 1
when { = IMAY -~ 1 then 1+ 1 = 1
when 1 = IMAY then 1 = 1

The set of finite difference equatiens has the range of indices given b
1 - i 7 IMAN = 1 and 2 7 j < JIMAY -1 which results in (IMA07-1) (Mav-2

- — - ¢

equations for the unknown vilues of x and v at the interior grid points.




The svsten of difference equations is solved using =uccessive over relana-

tion (SOR) iteration. For a general function f, an approximate soluticn

for f using SOR iteration has the form

{s+1 ( (=) -\ j

f- ) = .f + (1 - )f (=7) !

where s represents the iterate nunmber, is an acceleration paramcter, and

* represents the current value of { calculated from the difference equation. !
. . - s . . . !

The acceleration parameter is alwavs one for the first iteration. The syvstern

of linearized difference equations piven by Fquations 85 and 86 obtaincd
fror the elliptic generating differential equations is consistently ordervd (=710,

local optimur acceleration paraneters {y can be calculated
1

o

Phus,

theory (¥1) and are given by Hodoe Convergence of the iteration procedurn
is determined by comparing the ahsolute value 0of the difference in succes<ive

iterates with a prescribed error criteria Y.

The SOR iteration technique requires an initial puess for the solution.

Gecmetric contours with a shape similar to the outer computatieonal boundare

arc used for constant © lines and straizsht lines which emanate from the bods
center are used for 7 lines. A similar approach has heen successfully usded
b Thames (44) and Hodge (53).

The forcing function QC7, ) defined by Fquation 15 is cevaluated

o
)

throushout the (7, ) plane following the procedure described in Scction 11.F

s
Cldr

The similarity parameter values - (which wive equal increments of tangon

velocity for a specified number of boundary laver points) are calenlated fro

Equation 19 using Newton-Raphson iteration. The equivalent v values

given »( " line) arce found from the similarity relation, Eruation 19, (i,

roderivatives given by Equations 22 and 23 are then approximatet using the

above values for v and the specificd ' differences as follows:
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where 0 = 1, ¥y oare the boundary laver v values, and "v ds the speciticd
far field v difference between the last two points on the -siven  linc.
Then the damping factor D is found using Equation 24. Next the analvticnl !
expression for d° /dv in Fquation 21 is evaluated on the far f{icld interval
SN and on each boundary laver v interval determined by the v valiue .

i
This svster of equations for Ak< 3 is solved using Causs c¢limination. Thus,
for a wiven ° line, values for Ak and D are calculated for use in evelusting
the QC7, *) forcing function. This function is then used durines tihe 200
iteration for the transformation values of = and v.

Additional 7 contours can be added in the wake region by using

P
p=

interpolating technique given in Appendix C.

B. Yavier-Steoker Finite Mifference |

Approximate solutions of the unsteady, Revnolds averaged, inconpres-
sible, turbulent, Navier-Stokes equations are obtained by using an irplicit
finite diffcerence procedure.  Explicit numerical methods can bo u-ol 1
ohtain approximate solutions by advancing the time by small increnoni:
The allowable time increments are constrained by numerical stadilicy erit. i
Vo

Irplicit finite difference methods can also provide approximate =olntics

marching in time with small time steps. Implicit methiads usuall- doowov 7w

nurerical stability constraints imposced on the time step. Howevoer, ot oo

time step a larce svstem of simultancous difference vquations rust Tooo Tl

A natris iterative technigque such as SOR iteration is an attractive -oiatioo
1

method hecanse of the lTarge matris size. Convergence oritoria are tho a0 -

duced in place of stability criteria. ;




The implicit method consists of both a linearization of the cquation-
and the application of finite differences to those equations. The = cor-
ponent, transformed, momentum equation given by Equation 48 is considercd

first., Re~-arranving the convective terms, the equation bece

1 L - Jou o, 4 ou
+ e T TU G T A (€e)
e N z ' g

VFouation B4 i= now written in quasi-linear form where lower order

" RN

derivatrives of the variabtles ocour in "covfiicients". 7The current veloc

for the unknown variable at location (i, ) occurs in the highest ordey
derivative of cuch torm while the “coefiicients” arce evaluated with the last
available values for the variables u, v, and p. In this form. the covt?jvicent

of u. i the convective terms, (uy, -v

, is proportional to the component

T ovelocity in the 7 direction. Similarly, the coefficivnt of u, in the conveo-

(RN

tive tern: (vi.-uy D0, is proportional to the compuonent of velocity in thic

odirection. These quantitices are designated UC and VC, respectivelr.

Finite diffcerence expressions

in Appendix B arc used te apyp

mate the terms in Fouatien ¥, First order accurate back

dre used for th

Ctime derivative.  The Tirst derivatives of pressure arg
approvimated with second order accurate central differences. livewize,
SR

sovond order ceontral difference expressions are wsed for the second derivat ivo

arovelocity in the viscous terms.  Sccond order accurate vpwind differoncine

i u.ed for the velocity first derivatives in the convective terms. Ty
qurantitices U0 and VO determine the sign of the Jocal velocity in the 7 oan
dircction.. 1Y 70 - 00 then hackward upwind differencing is necd tor thy
Joerivatives while U0 bodictates forvard upwind differencing.  Alsc . Bach-
wird apwint ditterencineg for o derivatives ocours 18 1 Dowhide Coreard

i S i e - e




upwind differencing is used if VC - 0. Sccond order acourate

3 ferenves arc also used for the velocity first derivatives in the viscous

of the coefficients.

o

The direction is determined by the sigp

! terms.
; Points on the J = 2 and J = Jw

- 1 contours use fir-t order upwin

3 1z $a- 19 . L

differences for » first derivatives if the velocity dircotion indicates

flow from the body surface (J=1) or the outer boundar. 72 = ', 00 loar

4

the body surface the gri

d spacing is extremely small, and velocite

are small near the outer boundary. Thus, in

artificial viscosite has

a negligible effcct,

pOth

o L
st trans:

Cases

the assoc

Tortatio

noderiva-

1
Pradlents

tives in Fquation 86 are evaluated with second order ceniral diffcrences
The velocity derivatives in the velooity divergence term are alic eva
using central differences.

Ditference eguations are written with the followines convenici: cor- f1

ventions. Terms which contain unknowns at lecation (i,j) are “ullv sub-

-

scripted, ‘he finite difference expression for location (i, Y as
deseribed previously is understood vhen only the term s ziven.  The sub-
szripts (1, ) and superveript noare assumed when omittod.  lle resnltino

dittorence eguation for Equation 8% becomes

3% Z i+1 ij i-1 .- i+l . -
- == (4 - u + - u A
‘I: +1 j+1 -1 j+1i i-1 i-1 i~ G-l
- 4 . N — I - i i N
( 4y 4u]\1 + u!\:) . (\n] au,\} + S
i

A Nt




wherce
for U'C > 0 for UC 0
ICl =1 -1 ICl =1+ 1
IC2 =1 -2 1IC2 =1 + 2
for VC - 0 for VC < O
JCl =3 -1 JC1 = § + 1
Jjcz =3 -2 JC2 = 3 + 2
>l o
and UV -./23" and VV O e /207
where
for 'V > 0O for UV 7 0
IVli=1 -1 vl = 1 + 1
Iv2 =1 - 2 V2 =41+ 2
for VV > 0 for VWV < 0
Jvli =3 -1 JVl = j + 1
Jv2 =3 -2 JV2 = 3 + 2

The difference eguation for conservation of mass, Equation 51, for location

(i, 3) is given bv

A% X Voo
D=y Qg m v ) =37 My~ Vi) - 33’(UJ+1 T Uy
X -
—_— 1 - 7 Q
37 Wy T V) b

The following finite difference definitions are introduced for the

transformation derivatives and coefficients at location (i, j):

XETA = x /2] XNT = x. /2]
YETA = v /2] YX1 = v./27

2 2 /2
ALFA = /] GAMA = v/J BETA = -£/21

With these definitions, Equation 90 can be written to provide an expression

for u?. given by
iJ




* n-1 .
= - + LU]-YETA - p. +Y¥I( - p.
Ui i CISYETAGD g - Pyg) FYRIG gy -y
+ UC (¢ - + Ve (4 —ul ) =
LC Gupey - upes) C Gugey vy -
+ L [ALFA(u + u Y + GcAMA(u +ou, )
Ret - i+1 i-1 3+l i-1
+ BETA . - )+ (4 -
BETaCu; 41 7 Yia1 5-1 T Vil 5o 7 Vi ge’ Hypn T OW

+ \\‘(AUJY1 ujyz)]] [ 1+ e3C U+ Ve o+ UV o+ v )
o)
+ —— (ALFA + GAMA)] (420
RcL

where * denotes the value of the unknown calculated directly from the dif-

ference equation.

Several observations are made concerning the difference equation for

uij given by Equation 92. The unknowns vij and pij do not appear explicitly.
In fact pij does not appear at all. The v component of velocity v, does
) T Vi
appear implicitly in the quasi-linear coefficients 1C and V( as docs UL
5
-~

The previous value for Ui‘ occurs explicitly in the term containine thwe
. :
o

velocity divergence D. The finite difference linearirzation assumption

requires that the latest prior values for uss and v, are used In these
J J

instances.

In an analogous manner, the v combdonent, transformed momentum equatic:,

. . . . n
Equation 49, is written for vij and becomes

* n-1 .
.= v, + Lt NET! , ~ . - XX N, - R
\1J VlJ t[xE A(p1+1 pl—l) \I(Ij+] pj—l)
L hr _ e oy - s - o
+ ¢ (4\1F1 VICZ) + \C (A\JCI \JC?) v
+ »-L— [ALFA (v + v Y 4+ GAMA(Y + )
Re - i+1 i~1 N J-1




+ ” VI ’ - + ‘V' - '. ‘-“‘ 4 - ! . :‘
BETACV b ge1 7 Vil 3o1 T Vie1 go1 T Vion ger? POV B TV
oW vy - "J\":)]]'/"l + Lt{3(CUC + VO o+ UV o+ V)
+ == (ALFA + GAMAL® (93
Ret

Again, pij does not appear either explicitly or implicitlv. The unknown
uij appears implicitly in the coefficients UC and VC. Also, vij occurs
implicitly in UC and VC and explicitly in the velocitv divergence ter:n.
1lie most current previous values for uij and Vij are used in these lower
order coefficients.

The static pressure throughout the flow field is calculated from the
Poisson pressure equation, Equation 50, derived in Section II. Second
order accurate central differences are used to approximate the second
derivatives of pressure in the transformed Laplacian term. The first
derivatives of pressure in the laplacian are approximated by second o.der
accurate upwind differences. The direction is based on the sign of th:
coe{ficients ¢ and T which is the same method used for the momentur cqui-
tions. In this equation, a nonlinear source term occurs which is composed
of transformation and velocity derivatives. The transformation derivatives
are approximated with second order accurate central differences. Second
order accurate upwind differences are used for the velocity derivativee.
The direction of the differences at each location is determined hy the
direction of the local ~ and * velocity components related to UC and V(

previously defined. The time derivative of the velocity divergence is

approximated with a first order accurate backward difference. Ghe require-
ment that the velocity Jdivergence at the nth time ste; be zero is incor-
. Ce e ; . n - C
porated into the difference equation by setting D to zero. The numerical
/’(4




. n-1 . . . .
non-zero quantity D is retained as a correction factor. In this wav,

the static pressure is found which tends to satisfy mass conservation at
every location for each time step.
: The following definitions are given for the finite difference repre-

H sentation of the source terms as described above:

Uy = (_\vr‘u ;- y ‘;Uy )/J

'y = (x o, X u Q/J

Vo= (v v po Y fvr;)/']

VY o= (kv - ox v )/

1f these definitions, the previous transformation coefficient definitions,
and index conventions are used, the transformed pressure equation, Eguia- '

0

. - . . . n .
tion 5%, i< rearranged for the field static pressure pij given by

n~1
T ol 24
. o ~ reey = Ay ~ N T .
ot ()T o+ 20X UY) 4+ (VY)T 4+ ALFA (pi+] + pi_])
T P py) PBETAG gt Py g R 0
. v ‘ oy ’ . 9 .
ooy g TGPy T ppy) VY Gp g = pg) /30
SV ) 4 2(ALFA + GAMA) (9)

In this equation p,. does not appear implicitly. The velocity components
1 Plj PP P 3 : p

u, . anl vy oare onlw present implicitly in the nonlinear source ternms.
j : >
The three difference equations, Equations 92 thru 94, form a sct ot
equations for the flow variables u, v, and p at location (i, i) in terms of

the transformation derivatives and values of the variables at neighboring

points. The quasi-linearization and differencing mcthods have decoupled the

equations with respect to the higher order terms for thce unkrowns at location

(i, j).




The large system of finite difference quations which must be scolved

th . . . . .
for the n time step is solved using SOR iteration given by

+ * 5
u€§ D = . u,, + (1 -« ) u?%) (954)
ij uv 1] uv ij
s+ * s o1
VF? D - v.,+ (1 -« ) vgé) (95b)
ij uv 17 uv i
PN A N
D - p® (v50)
1] P 1] P 1]
where s is the iterate number, * designates the current value obtained
from the difference equation, and v and p are acceleration parametors.

The acceleration parameters are alwavs unity for the first iteration.
The computation of the wall static pressure is carried out separatcly
as discussed in Section 1I. The pressure iteration technique of Chorin (A&],
given by Equation 40, avoids the difficulty of formulating one sided dif- ‘
ferences at the body for the Laplacian of pressure. Also, at the bodv sur-
face, conservation of mass is directly imposad. Second order accurate
upwind differences are used for the transformation and velocity first
derivatives in the velocity divergence of Equation 51. The acceleration
parameter :, which is related to SOR iteration of the Poisson pressurc cqui-

tion, is given by Hodge (53) as

i o= 20/ 4t(ALFA + GAMA) ()
pb
where “pb is an acceleration parameter for the corresponding SUL iteration
of the Poisson pressure equation., For consistency, the iteration cquation
ic repeated as
(s . -
p(s+]) = p}, ) - b (w7
b

where s represents the iterate number and the index notation is kept as
described above,

The trailing edpe pressure on an airfoil can be difficult to ohtain

using the iteration procedure if a sufficiently fine vrid i« not presant.
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Hodge (53) experienced such difficulties in his laminar flow work. The

trailing edge pressurc can then be calculated using an average of valuc:

obtained by linearly extrapolating the pressure: calculated at the closest
points on the upper and lower surfaces. For a two point linear extrapola-

tion in the x direction, the pressure at the trailing edge bhecomer

(xl -~ X3> Py - (xl - %50 Py

2(x, - x3)

(67a)

where the x's are the ¥ values at the sclected surtace points and the sur-

face j = 1 value is understood. "
The iteration procedure follows a prescribed order at eacih peint loca- '

tion (i, j)}. Onlv the body surface pressurce is computed on hodv points,

At field points, the u velocityv component is computed first, then the v

velocity component, and finally the ficld pressure p. The pointe are ordordd

by varving the v (j) index from j = 1 thru j = JMAY-1 on successive 7 lines

in the transformed plane. The ’ lines i = 1 thru { = I¥AY-1 arc traver od.

Values for the variables at i = 1 are set equal to the values ot 1= MO
to insure continuity across the transformation branclh cut. The 1 index

is adjusted across the branch cut in a manner Identical with thatl describod

for obtaining the transf{ormation from cquations &5 and =¢,
C. Bour‘ary and Initial Condition- %
) |
Boundary and initiai conditions are formulated for use in the corputa-
tional planc in order to completely define the numerical probler . Boundare l

conditions on the hodv surface arc conveniently specificd with the Lol -

fitted coordinate svstem.  The first © contour is constructed to 1o tia
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body surface. The analytical no slip boundary conditions for velocity
given by Equation 52 can be directly applied to the bedy surface in the

computational plane and are given by
u, =0 v, =0 (98)

where the subscript b denotes the body surface " contour. the surfacc
pressure is calculated as discussed in Section TV.B.

The % lines 1 = 1 and i = IMAX in the computational plane defince the
branch cut in the physical plane. No boundary conditions are required or
allowed on these contours. The matching of solutions on these lines, which
was described previously, provides a continuous solution across the cut.

The outer boundarv in the physical plane frequently represents con-
ditions at infinity (freestream conditions) wiven by Fquaticns 53 and 54.

In the bodv-fitted coordinate system, the outer houndarv bhecomes the largest
v, line in the computational plane. The physical cuter boundary i~ (hoesen
to be a circle with a radius of 10 airfoil chorde. The distributicn of
points on the outer boundary is readily wspecificed on a circle; ales, tha
initial input solution for obtaining the transforration as discurced in
Section IV.,A is simple to specifyv. Ghia and Hodge (500 applicd o nurerica?
inviscid anlavsis to a Joukowski airfoil at angle of attack using froo-
stream boundary conditions for different outer boundarics. Thev {found

that for a 10° angle of attack the 1ift coefficient differed o less than
one percvent and the maximum suction pressure coefficient by ohout two por-
cent from the analytical result. Navier-Stokes selutions using o circular
outer boundary with a smaller radius are compared with the 106 chord radiue
result to determine effects of boundary placement.

With the outer boundary elected to approximate the far ficld 1roo-

stream, the boundary conditions for velocity and pressurc arc spoecitic.

P




As pointed out by Roache (83), caution must be exercised in applying the
analytical conditions, Equations 53 and 54, which are strictly valid only
in the limit of large distances from the body. 1If these conditions ¢re
used on a boundary at a finite distance away, the result mayv predict no
drag since a wake cannot exist at the outer boundary. This problem is
avoided by applying upstream and downstream boundary conditions on the
outer boundary. The upstream boundary along which conditions are fixed
is defined by the semicircle in the half plane x < 0 where the » axis lies
along the airfoil chord with the origin at the midchord. The downstrean
boundary for which some variables are permitted to be free is the semicircle
in the half plane x > 0.

The upstream boundary conditions for the incoming undisturbed f{low
become

u = cos u = 0 (99)

iJMAN Vioamax Pi paay

where i ranges over all f contours which terminate on the upstream boundarv.
The downstream boundary conditiors must allow a wake downstrear of a

bodv to pass through the boundary. The no change boundarv condition has

been widely used (53,83) and meets this requirement. One approach requires

no change of the velocity components in the frevstream direction. Using

the expressions for the directional derivative and gradient in the trans-

formed plane, this boundary condition can be written for the u component

of velocity as

u, = u, (x, siny -y cosu)/(x, sin: - v, cos:) (10000

.
where 1« is the geometric angle of attack. Now consider a similar down-
stream houndary condition where the no change condition is imposcd on the
velocity components along the downstream ° contours. In a =imilar manner,

this condition in the transformed plane becomes

i
1
B
{




This boundary condition is identical with the freestream direction boundar:

condition of Equation 100a when the < contours are in the freestrean directiuvn,
yr/xv and Equation 100a beconmes identical with Equation 10

tanzt
This case does occur in the downstream wake region for the transformation

In this case,
Small changes in the velocity components arc

IV.A.
The downstream far field inviscid

obtained in Section

found in the far wake region of bodies.
flow field also has negligible changes as seen in the analysis of Appendix

Thus, the no change conditions of Equation 100b approximate the small far

F.
field downstream variations in velocity while allowing the momentum defect
be congidered

in a wake to exit at the outer boundary.

The downstream outer boundary condition for pressure must
Hodge (53) investigated the use of a

along with the velocity conditions.
similar no change condition for pressure, namely, p = 0 coupled with the

His laminar solution developed pres-
ifving the free-

(53Y.  The

velocityv conditions of Lquation 100b.
The more restrictive condition of speci

oscillations.
tv d

sure
strear. pressure in the far wake was successfully used by Hodge
efcat

specification of pressure recovery with a freely developing velocity

in the far wake gives a set of numerical boundary conditions which

can phvscially represent the far wake at a finite far field downstredan
(10

boundary. The downstream pressure boundarv condition becomes
=0
.

Clidlis

Pi Ay
The suitable description of the phyvsics at the downstrean compn
The no

foerenoy

tional boundary must be written in finite difference form.

(i indes vive:

condition approximated with a second order accurate central dif
applied at the midpoint in the computational planc between the boundar
" contour

interior point on a downstream

point and first




for the downstream boundarv conditions of the velocity components. 5o
alternate formulation is obtained by appro:imating the no change condition
with a second order accurate upwind difference applied at the boundary point.

Then, the downstreanm boundary conditions for the velocity components becony

Upgy T (Unganey T Vo) /3

(107
r = 4 -V
Viax © BVieer T Va3

These boundary conditions also follow from a second degree polyvnominal it
with a zero derivative imposed at the downstreaw boundary.

The time dependent finite difference method given previously reguires
a set of initial values for the velocities and pressures at all the (i, 1)
locations. This requirement parallels the result discussed for the Jir-
ferential equations in Scction 171.b. Two methods are used to provide
initial conditions. In the {irst method, an inviscid selution with cir-
culation for the flow field at the given angle of attack is ohtained using
SOR iteration as described in Appendix G.  This solution then prevides
initial values for the lavier-Stokes solution. The second tecinigue uses
the Navier-Stokes solution for one angle of attack aad rotates the veleoitios

by the change in anele of attack., 7The set of initial values for veleoit ond

N -

pressure is then used to start a Navier-S+tokes solution at the new ancic of

attack.

D Turbulence “odel :

The numerical procedure which implements the eddy viccosity turbulence

model described in Section T11 is discussed.  The two laver podel near the

airfoil surface is presented followed be the far wake model.  The procedar
1

used In the near wake is then described.  The odds

throu hiont the flow ficeld {s calculated at the beyinning of cacd tive g

viccoeits dicoribation !
!
|




SOR iteration is then used to determine the velocities and pressures at the
new time level. The eddy viscosity distribution is not changed duriny the
iteration process.

The inner viscosity computation from Fquation 67 requires values of
the tangential and normal velocity derivativers and the distance froun the
surfuace. These velocity derivatives arce given by Lguations 70 and 71 in
the transformed plane. They are evaluated using second order accurate central
differences for both the transformation derivatives and the u and v velocity
component derivatives with respect to ~ and ", The inner eddv viscosits is
identically zero at the surface (*=1) and need not be calculated separatel: .
The corresponding velocity expression which is found in the exponcent
damping factor, Equation 62, must be evaluated at the airfeil surface for
each 7 contour in regions of turhulence. The derivatives with respoct to

v are approximated by second order accurate forward differences found in

Appendix B, and the derivatives with respect to 7 are evaluated using second

e

.

A order accurate central differences. The distance from the surface t
point (i, j) is mecasured along the constant [ line represented by indom |

The freestream chord Revnolds number appears throughout the molel a- o

result of writing the equations in nondimensional form and is an input pu
meter.,

The adverse pressure gradient turbulence model modi<ication in the

o]
-
-
o
.

trailing edge region given by Ernuation 65 is implemer i n
of the distance s, measured alony the airfoil surface trov the trallin: odyi
on the T ocontour next to the curtoe o im0 Thy senrch begdn oon U 1
corre=pondine to the 9% percent chord lTocation and advatces toward the air:
leadine edoe dlons the second © 0 b, e search terni

3

value for u, N i~ detcoted vl Pty it atta hed flew
1

separation peint, is determined by ecarining the u velocity conpoient at 0 int-




f is then evaluated for each applicable 7 line where trailing elge separa-

it o

tion is detected. The inner eddy viscosity is multiplied by the rela:
factor which adiusts the adverse pressure gradient inner eddy viscosits

constant kl.

After the inner eddy viscosity is computed, the liriting technique
evaluates the computed value. The inner eddy viscosity is prevented {rom

decreasing in the outward normal and dovwnstream tangential flow directions

by comparing the value with previously computed values as given hv the

following sequence:

Lo and L . :
ij — 1 3-1 ij - i-1 ;

T

e larger value is selected during eac!: comparison.
eddy viscosity limiting distribution is calculated in the attached houndure
laver region with a favora®ble pressure gradient near the airfoil leading edgoo.
1 11

Wel o

The first or outward dircction limiting condition is imposed here as
The limit value of the inner eddy viscosity is then compared with the

ated outer laver eddy visco=itwy., Wnencver the inner edd. viscosity

then used Tor the

—

t

w

b
1

first exceeds the outer value, the outer eddy viscosi

remaining locations outward from the surface. This switcell insurces the con-

tinuity of the eddy visrosity distrihution.
The computation of the outer eddy viscosity given by Fquation £1 1o

i

quires values for the local boundary laver edge velocity and the displavencrt

P

These quantities arc caleulated Tor o

thickness defined bv Equation 64.

contour which crosses the turhulent boundary laver. For a © line, the loco]

edge velocity U, is defined to be the maximum tanpential velocity

: . hl .y .. b .l .
ential velooit SR

relative to the local surface tanpent line
b Fguation 6% and i< evaluated as descrited previouslsy for the imner edd
visco=ityv. The boundary laver thickness & is then the Jdistance atens .

lTire fron the surfave to the first point whore the taneontial wvolooic s

ey e

oy




less than 0.99 u . The displacement thickness is calculated uging trape-
o

zoida]l integration where the limits of integration are deterni

computed boundary laver thickness.

TN i e L

The resulting eddv viscosity distribution is next modified to simulate

the transition from laminar to fully turbulent flow. The transition factor

T, given by Fquation 67, is calculated as follows. 7The startine location

for transition on the airfoil surface must be specified. 7Tlis location is
specified by designating the first grid point on the surface downstrear o

. The transition distunce

i

well as the distance to that first grid point
s from the starting location to a given °~ line is caleulated b oadding =
to the distance between the successive surface grid peints with, wnown Joca-
tions, The relaxation factor | is determined from the transiticr fYector
Equation 67 and the definition of . If | = 3/4 is specified when tin

transition distance equals three fourths of the total transition length, then

1/ is given by

1/7 = 2.4456x {10

s + - 1

where x is the total assumed transition length. The eddy viscosits din-

T.

tribution computed previcusly on a © linc is multiplicd b the corresponldine
constant 7 to obtain the revised distribution of turbulent cddy visos v
which includes the transition region.

The final modification mude to the eddy viscosity distribution acre
the upper surface turbulent tegion invelves the decrease of turiaics. in
the direction from the bouncary laver toward the far Tield.  Tho intormition.
factor given by Tquation 62 models this behavior.  The previous T calouiatod
boundary laver thickness © and the distance from the airfeil surteoe to thy

(i, j) looation on a © Tind are used to compute the intermittency . oior tho!

location.  The previons values of the outer eddy viscosity are

the corre-ponting value of the intersittency factor to obtain the tinal ol




!
H viscosity distribution for the turbulent region chove the airicil surface
g .
k, th .
' at the n time step.
q The procedure for computing the eddy viscosity distribution on a
i
' line across the turbulent flow zone above the cirfoil ie repeated down-
; stream for cach © line through the Y5 percent chord point. [Le 7 contours
| near the trailine edve deviate from the local nermal direction in excess

of 10Y.  For locations in this small region, the eddy viscosity is found

b usins the last calculated value upstrean in a direction tangcent te
airroil surface.
e

The caleulation of the far woake odds wviscosity civen ho Frueticn 7o Ls

similac to the computation of the cuter laver eddy viscosity.,  In the Wit

orthogonal to the flow dirceticn in

fon the © contours are approx

—
-
~

the ware.  The 7 contours are thus conveniently defined paths across
for usc in counputing wake characteristics.

¢ oan - contour, the component of velocity in the freestrear direction

1= ¢computed Uor the grid peoints spanning the waxke. The minimum 0f thesc

directional velocity components in the wake s determined.  The

viluces of the velocity components which occur on either gide of ti

value are found and designated the upper and lower edpe velocitice.  Thon

-
-

the upper and lower e of the wake are defined as the points

local velocity component in the frecstreanm direction Tirst reaches “% por-

cert of the upper and lower edge velocities, respectivelv.  The distanmoes trov
the point of minimun velocity to the upper and ATe ot
das the upper and lower wake thickinesses, regpectivelv.  Thesce distanm

determine the lirits of integration when caleulating the nppor and Tower woin

displacement thicknesses {row

uation A4, The oricin o e varialle o

interration is at th point where the minimnr velocity coenrs . T

upper and lewer wave displacenent thicknesse: are nurnoricad o evai et o witt




traperoidal integration. The half wake displacenent thickness “% is
w

the average of the upper and lower displacement thicknesses. The far
wake eddy viscosity is calculated from Equation 73 using the thickness
and an average of the upper and lower edge velocities.

The intermittency factor for each grid point on an © conteour is detor-
mined using the average value of the upper and lower wake thicknesses for
in Equation 63. The local distance to each point 1is calculated from the
location of minimun velocity aleng the ° contour.
The near wake model is numerically implemented by considerines the upper

turbulent and lower laminar boundary lavers separatelv. The eddy visces=itn

distribution, which is calculated near the trailing edge of the airfceil at
the 95 percent chord location, is extended into the near wake alon. o
direction parallel teo the airfoil surface defined by the 95 percent chord

and 99 percent chord grid point locations. The chord line is the line of

extension for the boundary lavers in the near wake. The ©~ lines 1= 1 and

cefine Jhe interaction zone in the near wake. The non-inter-

acting di-tance WL in Fouation 74 is based on the length of the lover

—

laminar boundary laver thickness computed at the &5 perc nt chord lacation.
This boundary laver thickness is computed by the same method used preoviensty
'+ the upper surface boundary laver. The distance WL, alony the chord
.ine from the trailing ed- e to the location where the far warke oddn vis-~
cocity mode! hewins ie also calculated as a multiple of the laminar traii-

iny odioe b oundary laver thickness. The eddy viscosity in the interactior

zone is computed with the two calculated di. tances and the far wawe cdds

Y

viscosity using Equation 74, ‘3

F. Force Coefficients

The forees and moments exerted on the airfoil body bhe the flow ficld

are evaluated at the body surface using Fquations 79, 80, and &0, T

6]




OS] sy

integrals are evaluated using trapezoidal integration. The product tern
in the Integrands of the form (fg) are integrated by using products o

averages, (fi + { Y (g /4. The 7 derivatives are evaluated using

. . R,
i+1 i Sid
second order accurate central differences, and the ' derivatives are formu-

lated with sccond order accurate upwind forward differences.  The 1ift ani

drag coefficients are calculated by adding the components of = and v directiovn

force coefficients in the normal freestream (¢7 degrees counterclockwise) and

freestream directions, respectively, using Equations I'.13 and D.14.
b P i

o)

The alternate technique based on the control volume analvsis in

Appendix D for computing the forces on the airfoil bodr is numerically

g
b,
s

implemented in a similar maanner. 7The ferce coefficients in the »w and
directions for a two-dimensional contrel volume defined by an © line are
given by Equations &3 and &4, respectively. The line integrale are ascin
computed with trapezoidal integration using products cof averages. 7The
derivatives are evaluated with second order accurate central differences.
The » derivatives are ¢valuaced with second order accurate central ditv-
ferences on the interior » lines. Second order accurate upwind Jdifierences
are used to approximate the ' derivatives on the hody and outer boundary

v lines. The area integral is also evaluated using trapezoidal intepration.
The Jacobian for an area element bounded by the 1 and i+l liner and -1
and j v lines is calculated by taking the average of the Jacobian values
previouslvy computed for the viscous term in the line integrals at the cor-
responding 7 segments on the j-1 and j ' lines. The arca integrale ar
computed for hoth n and n-1 time intervals using the previous=ly computed
flow field values. The time derivative is then evaluatod using o firt

order accurate baclkward differencoe.

e,




SECTION V

DISCUSSION 0. KRESULTS

Numerical solutions for two-dimensional incompressible turbulent

viscous flow over a NACA 0012 airfoil section are ohtained usiny the

implicit finite difference method previously described. The NACA D012

airfoil section is chosen because of its widespread use as a test case
in both experimental and computational work (65,66). The solutions are

for angles of attack of 57, 7.57, 9.57, and 11.5° at a chord Revnolds

number of 170,000, This Kevnolds number is selected for comparison with
both previous NACA data (3¢ and for data obtained as part of this investi-
gation at the Air Feorce F. J. Seiler Research Laboratorw (vl *.
The numerically generated bodv-fitted coordinate svsten which was
uscd for each solution is presented. The successive--ver-relaziation
(SOR) iteration numerical parameters and convergence ¢riteria alongs with
the steady state convergence criteria are then discussed. The velocity
and pressurce fields and streamline contours obtained {rom the numcrical
so0lutions are examined. The calculated laminar separation bublLle charac-
teristice are compured with empirical results. The position of tran-ition
to turbulence and the transition length relative to the separation bubtble
location are discussed. The computed airfoil surface mean pressure distri-
butions are compared with both an inviscid solution and ewperimental data.
The numerically predicted 1ift and drag forces exerted by the flow Ticld on
the airfoil arc presented along with available experimental measurenents . ;

The effects that the placement and type of imposed far ficld houndare

conditiens have on the numerical solution are discussed.  The sensitivite

of the numerical solution to grid sizc is exarnined.
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The curvilinear body-iitted grid shown in Figure 3 is numericall:w
generated using boundary layer parameters for the attraction of & con-
tours towards the airfoil surface and linear interpolation for waxc
resolution given by Appendix C. The Blasius series {lat plate chord
Reyvnolds number of 200,000, a nondimensionalized boundary layer edge
velocity of 1.2, and seven grid points specified in the boundarv layer
are used in the ' contour attraction technique (7). The distribution of
airfoil surface points is accomplished with Equation 26 where A1 = 0.6,
A2 = 0.4, and A3 = 1.0. Seventv-one 7 or surface points together =ith
fortv-four v contours are used. The transformation differencc equutions,

Equations 85 and 86, were then solved using SOR iteration. The optimun

local acceleration parameters varied between (.8 and 1.5 throughout the Ulow

field with essentially no change in the local values after 25 iteration:.
After 350 iterations, the maximum errors in the sclution for bothk = and
-4
vy were less than 10 . and occurred near the outer boundary above the
airfoil. Additional ¢ lines were added in the airfoil wale region usins
the interpolation method described in Appendix C. FEight grid pointis
(four at a time) were inserted on the rounded trailing edge. Table (.1
gives the 7 and » indexing for the final 79x44 grid shown in Fivure 13
and the equivalent indices for the 71x44 original grid.

The airfo’l ies thus defined by a total of 79 points. FEleven vrid

oints define the first 5 chord nose repion and 17 points are used to de-
T

fine the rounded trailing edee. The maximun distance hetwoen @i
surface grid points is 5 of the cherd. The 7 lines interscct the surfuce
contour within 110" of the local normal direction exoopt in the last 57

chord reglon near the trailing edge.

The SOR {teration parameters and convergence criteria which are roeguive

by the numerical implicit procedure are similar for cach anelo of attach




solution. The accleration parameters had values of 1.0 for the velocity
components, 0.9 for the surface pessure, and 1.10 or 1.15 for field pressures.
The larger value of ;p was used at 9.5° and 11.5° angles of attack. The
convergence criteria for the SOR iteration required that the maximum changc
in the relative magnitudes of u, v, and p for all locations be less than
1. This criteria was relaxed to 5” for the 9.5% and 11.5° cases. Threc
iterations per time step were the ma:imum necessary during most of each
computed case. For the 9.5° case, the approach to the steady state solu-
tion was re-run with 4pb = 0.95 and @p = 1.10 for two characteristic times.
An additional iteration per time step was required to maintain the san.
error tolerance. Computed values of lift and drag were virtually identical.
Although implicit SOR methods have been shown by linear stahility
analvses to be unconditionallv stable, convergence at a given timc¢ re-
quired a small time step £t < 0.001. The analvsis in Appendix E based
on linear matrix theory indicates that the diagonal dominance of the set
of finite difference equations given by Fquations 92 and 93 tas a defin-
ite dependence on 1/.t. Diagonal dominance is a recessarv and sufficicat
condition for convergence (81) of constant coefficient linear svsteme
usiny SOR iteration. Although this svstem of equations has lower order
nonlinearities and variable coefficients, the order of magnitude stud-
of Appendix E indicates convergence if the most stringent requirement
Lt 0.0003 is applied. A constant time step equal to 0.0005 was used
for each scolution. No convergence problems were cncountered.
The finite difference method described in Sectien 1V is a time de-
pendent technique. The solution is advanced in time by "t increments.
The numerical solution was considered to have reached a steady state whon

changes in the computed values of the 1ift and drag cocificients were lToa-

then 17 over one characteristic or nondimensional time period.  Fach “tonds




state solution required three to six characteristic time periods and fror
two to four hours of CPU time on a CDC CYBER 750 computer.

The numerical solution of the mean flow field near the airfoil scce-
tion at each angle of attack is presented by using streamline contours,

velocity field vectors, and pressure contours. The mean streamline con-

tours are shown in Figures &4 through 7. A small lanminar separation bubllc
on the upper surfacc with negligible trailing edge separation is seen in
Figure 4 for u = 5°, For an increased angle of attack equal to 7.5%, the
separation bubble has decreased in size and moved forward toward the leadiny
edge of the airfoil. Figure 5 also shows the turbulent trailing edge separatic:
region which has also moved forward. The trailing edge separation region
has grown significantly and has progressed to the quarter chord position
when the angle of attack has reached 11.5°. This behavior is twvpicalls
observed during trailing edge stall (72).

The velocity field vector plots presented in Figures 8 through 11
also illustrate the phenomena discussed above. In addition, & smil] sctle
clockwise rotational motion is observed in the rear portion «f the trailing
edge separation region. A circulatory flow pattern within the laminar scpara-
tion bubble is seen for « = 5 in Figure 8. The boundary laver ncuar the
leading edge for each angle of attack contains at least {ive grid points
along each f contour while approximately ten points resolve the lower
surface laminar boundarv layer near the trailing edge. This number of point:
should be sufficient to resolve the primary features. The pressare con-
tours neatr the airfoil in Figures 12 through 15 clearly show expandine

regions of low pressure above the airfoil and high pressare holow the air-

fuil as the angle of attack increases. The large pressure variations in
the upper surface suction peaks arc also observed. The pressnre $icld
indicate that only small pressure variations occar in the wake tor oa

anyle of attack.  The smoott and continuons numerical scelatior dor th




pressure field is in sharp contrast to the large oscillatory results
obtained by Hodge (7) for laminar flow.

For a moderately thick airfoil with a smooth surface in a flow
with a low freestream turbulence intensity, the lamunar boundarw laver
near the leading edge can separate upon encountering a strony adverse
pressure gradient. Subsequently, shear laver instabilities cun causc
transition to turbulence. The increased mixing may reattach the shear
laver and therebyv form a separation bubble. The formation of separa-
tion bubbles and their relationship with the stalling characteristics
of airfoils at various Reynolds numbers have becn investipated by
Gault (85), Gaster (86), Hoad, et al (87), and Arena and Muecller (Fr).
The laminar separation bubble has been observed experimentally by Gregory
and O'Reilly (89) for the NACA 0012 airfoil over a large rance of
Revnolds numbers. These experimental and empirical results will be used
to compare with the numerical solutions.

In this investigation, the beginning of turbulent transition on
the upper surface of the airfoil and the transition length have been ba-od
on the closure of the laminar separating shear laver. The surface moan
pressure coefficients for o = 5° and 7.5° presented in Figures 16 an!
17 clearly show the laminar bubble constant pressure recion, downstrea:.
of the suction peak, followed by a rapid recovery. Transition in the

nunerical solution occurs near the downstream side of the bubble whore

the steep pressure recovery begins. This phenomenon has been roportod b

Wallis (90) and Arena and Mueller (&8). The cliord location= ifor i,

start of transition X, and full turbulence 2 relative to the soparation

and reattachment points of the bubble, X and o respectively, are piven

in Table T. For the smaller angles of attack, reattachnent ocourrd!

prior to attaining fully turbulent flow. This hehavior hae been ox-

1
i

o

perimentally observed b Arena and Mucller (8F) in thoir Tow Fovne




TABLE I Computed Characteristics of Turbulence Near

The Airfoil Leading Edge (x = -0.5)

a (Deg) Xg X, xp Xy
5.0 - 0.42 - 0.24 - 0.15 - 0.no
7.5 - 0.47 - 0.42 - 0.38 - 0,35
9.5 - - 0.48 - - 0.46
11.5 - - 0.49 - - 0.48
4
¥
TABLE 1I Computed Laminar Separation Bubble Characteristics 3
:
% (Deg) Mg H0g Re: g Re. o z Ly R §
5 L1245 3.1 680 220 L0025 .27 ~.002 ;
7.5 .091 3.2 540 168 L0013 .09 =002




number flow study.

The computed values of several parameters at separation for both
a = 5° and a1 = 7.5° cases agree with empirical results and are presented
in Table T1. The pressure gradient parameter » = - = Re duv/dg

in nondimensional variables, where = is the momentum thickness and s

is arclength, compares favorably with the laminar separation criteria

of Curle and Skan (91) given by M > 0.09. The shape parameter =
¢%/. takes on values of 3.1 and 3.2 at laminar separation compared with
an average value of 3.5 reported by Curle and Skan. The Revnolds numher

at separation based on the displacement thickness (Re.,.) has a value

RS

greater than 500 and predicts a short bubble using the Owen-Klanfer (v2)

criteria confirmed by Gault (85) and Crabtree (93). The bubble length L, r

at

2. ;
is of the order 10 C*S and decreases rapidly with increased angle of attack B
v A
as seen in Table 11. This relationship also indicates a short bubhle (40,
A <o [ L2 80}

93) whereas long bubbles have lengths of the order 10 ?”S (85,86). The
assumption that laminar separation precedes turbulent transition is verificd
with the computed Reynolde number at separation bhased on momentum thickness

Re =< Crabtree's (94) criteria indicates that transition has occurred if

Re. . > 780 when Mg first reaches 0.09. Thus, the solutions correctly proedict

that laminar separation occurs bhefore transition to turbulence. 7Tie turbu-

lent reattachment criterion for the bubble piven by Roberts (¢5v is =

( /u ) du /ds » - 0.0059, This criterion is also satisf{icd as ~hown in
o Z

o
Table IT.

The trends discussed above for Nq. and both boundary lTanor Loomnmelds

R '

numbers continue at the higher angles of atiack. However, at anglor of
attack near stall the bubble length decreasces to about 1T chord (4 wied 1
is the order of the 7 contour spacing near the leading edyes Tho nuroricg? !
J
solutions at « = 9.5 and = 11.5 conseguent!y do et rescloe the bt 1 t
i
|




seer in Figures 18 and 19. The solutions become very sensitive to small

changes in the turbulent transition length x and starting location

1L

exanple, at : = 9.5° with an initial transition location of O ~0.4

a change in transition length from 0.022 to 0.025 produced sheddiny

of bubbles, large pressure oscillations, and a significant 307 increasc

in average drag compared with the steady state solution. The experinental

pressure data were measured with diaphragm transducers capakble of measuring

frequencies well bevond 5000 Hz. XNo dominant frequency was ohserved.

Hoad, et al (87) recentlv observed a small scale unsteadiness in a short

region near the surface of a NACA 0012 airfoil at angle of attack. The

laser velocimeter mean velocity histograms for a certain region near the

leading edge exhibited dominant and small secondary mean velocities. Hoaod,

et al sugzest that this behavior may indicate an unsteadiness within the

laminar separation bubble. The remaining flow field, however, was steadyv.

The numerical solutions presented f{or each angle of attack are the
result of a parametric study where the upper surface transition lengtl and {
location were varied in order to close the bubble and maintain steadw
In each casc, a further increase in the transition length or movement down-
stream of the start of transition resulted in a non-physical cscillat
wotion propagated downstrearn with an accompanied large increase in droo.
The good asreement between the calculated and empirical separation b1y
characteristics indicates that the origin of turbnicence on the uyper sur-
face is satisfactorily modelled.

Computed bhoundary layer velocity profiles at four stations on Ui

——

upper surface are compared with two scts of hot wire ancronetry dats (0o o

Figures 70 throush 230 The profiles were measured and computed at the sarm

y
locaticons on constant © lines located approximatels at Ix 0 06 oo g

|
a2 chord, The profile« are nondimensionalized T tie Tocalls computo! f

i

boundars laver thickness which o defined oot norral dietanoe tror vl




surface to where the tangential velocity fir-t attuwine 99 or tic !

edpge velocity., Signiticant EMS tluctuations for vacih anglo of attan. wWore
detected experimentally at the inner data point locaticn. tor stat] 0
throuch four which indicate the presence of a turbient foun Tavey

No fluctuations were observed in the lower surface boundars 1o o

the 907 chord location.  This result provides experimental ovider o :
the assumption that the lower surtace boundary laver rencins larnor |

the presence of the favorable pressure gradient at the hewoolds nunlorv

under investiration. The calculated houndary laver hecomes rhic:

strean compared with the experimental profiles. Tils re-:ul

caused by grid boundary laver resoluticn cvrrors projacuated downisiTesr o

by deficiencies in the tubulence model. The hot wire duts heve an

mated experimental error of 5.

The boundary lavers on the upper and lower surfaces merge to

wiake downstream of the airfoil. Wake nean velocity profiles at oF

.

cations of 0,53, ¢.79, and 1.54 for each ancole o at
Figures 24 through 27. The trailing edge is located ar o= = 0

files are measured along constant » lincs with the coripgin on the
chordline. The thicker numerical upper surface bhoundars

downstreanm. The computed large variations of velocity near the

N .
Lacy Gre 2.0wn

laver propacator

of the wake, which come from the lower surface boundary laver, arc {in ool

agreenent with the hot wire anemometlry measurements. The mearireron U= wWol

obtained at prid pointe using the original 7Ixdd wrid wiiile i

solutions were obtained from the 79x44 ¢grid svsten descorited prew

The computed values of the wake displacezent and momentun

[ I

approximately constant values within 15 of cach other a0 o lecs
chord dowrstrear of the trailing odge. Ther wero computod ns g

acenrate traperoidal intecration and sre o viven o Tatle 1010

~d
—

LSt g e




Computed Far Wake (haracteristios

5.t 0. Dol
7D n. A
Gy i Gt
1.9 ATNARS .
Phae kheonolds stress u'v' o, nondinensionalizes b L oWas T

and contour ploi- are shown in Flrures 28 through 21,0 The peonetris

patters is qualitativels similar to the experimental data obtained b

'

(oles and Woadeoes (96) for a NACA $412 airfoil widceh are shows ino

Fisure 2. Sorme experimental measurements were mace durin

wire ancmometry study (84) and are presented in Appendix . This

al=o illustrates the rapid variation of negative and positive stro-=c-

in the upper and lower porticns of the near wake, respectively. Maoni- f

tudes of the order 0.01 have been observed (84, 96) in the near wake

were alse ohtained numerically where the contour values vary {r
+7.01 in Vicures Z8 through 31.

The computed surface mean pressure distributicns for all four ancsle
of attuclk, presented in Figures 14 through 19, favorably comparc with
the esperimental data (84) which have an estimated error of 5 to t . An

inviscid soiution with 1mposed Kutta condition was computed using tiw

approach outlined in ‘ppendix G and is alse shown. The com; wted Navier-
Stohes larinar suction peak is well defined and increascvs rapidiz with
an.le o7 atrack. The lower surface pressurc peak botl moves downs trear
and hecomes broader a= the angle of attack increases.  This belovior
Puttl is

also seen {n the experimental data. & separation 1.

the experimen®al data where the curvature rapidle changeses Do babi o
t R

vccurs further downstrearn when conpared wich the Ger=Ytoke s compntal bon,
Thi- diference 1= probably caused by freetrear tarbulen o which oo dets
soparalten and the suhecquent formatior o the SEPRRE SR Ny e ety




data were measured in a wind tunnel with a freestrean turbulence intensits
0! approximately 0.5 compared with the unperturbed {frecstrean. of the mo -

erical solution. Some disagreement occurs in the trailing c¢ld.e¢ rerion

where the computed result has a more pronounced flat trailing edge stall

DA, Y-t te: nlu

characteristic.

The computed inviscid surface pressure distribution consiste

predicts both a larger suction peak on the upper surfacc and & lary

sure peak on the lower surface. The discrepancies increase withn &
attack. The inviscid solutions predict complete recoverwy at the trailing
edge with a stasnation point and CP = 1.0, The large pressure gradients
in the inviscid and viscous solutions near the airfoil nose are rescelved

which indicates an adequate grid point distribtution in the regsion.

An examination of the experimental and inviscid surface pros=ure v
distributions for zero angle of attack given in Figure 33 provides
additional infeorm.tion., The inviscid pressure distributions, ohitained
with the 308 finite aifference techniquz in Appendix €, for the upper
and lower surfaces are indistinguishable. This phveically corredct

1

svrmetric result came direct.y trom the numerical solution and was not

speciflied as a boundary condition. TFurthermore, the numerical invi-od
result is virtually identical with an inviscid sclution (©7V usin: the

method of Theodorsen (12). The cxperimental data for boti, surfaces

agree well with the inviscid results which indicates the

that viscosity has on the pressure distribotion for a streamiined oune-

metric airfoil at zere angle of attack. s agreenent ais

evidence that the experimental airfoil section does o vois

012 confignration. Viscous offcete on the pressurc distritusion do coony

. s . .
(i warn previon-To mentioredr o= the ancle of attack s Peven e
crall Lo cormrarison hoetween the erperitentgl data tor tho o tw ot




reveals a slight suction peak on the lower surface.,  The suction pean
i sugyests that the experimental zero angle of attack way actuallvy be

J slightly negative. A smal deviation in ancele is plausidie since the
i

] experimental zero was determined by manually adiusting the airfoil
'

attitude until the presvure distributions on both surfaces ¢

[SEIES

)

identical.

The 1ift coetfticients obtained {roo the present turbuloent avic

Stowes =olution, inviscid results, and twe sets of experimenta. data are

i
—
i
PRS

compared in Figure 34,  The experinmental results shown have heen oo

for angle cf attacx. The e

ey

fective experimental zero ancle o attady Tor

(X

ined to be the anglo where the Ti0t

ciric airforl section is de

coci{ficient is zero. For the Sciler lLaborators resulis (oo, S viieo-

tive zero was found to re 0,57, This small cecrrectiorn. Is In acoord with
the analvsis of the nomingl zero angle of attack pressure distribution

1

The experimental data have therelore Teor

[

results already presente

translated .57 in the neqative : direcrion in Figure "4, The !
results (3%) were similarle published in corrected forn Dlhier comTen

two-dimensional wind tunnel corrections including 52142 Wlocking, wake

, and streatline curvature ceffects were investizated.  Toroirics:

low-specd wind tunnel correction factors (Y70 using the Soiler Taborotor
Al 1 . N 1 1 .. . - .
27x3 tunnel geometry were applied to tle data ar Ll

accournt for hlockace and wall interference. The correted vl

the 1ift coefricient and ancle 0 oot Fa Groo0L the un e
Tift cociiicient and = 0.0 0 ro o N S Y A M
Tivure 34 have heon so correst . ot v U NN
The tw anta of e Tiine U] L . RTIN SO T
dat e (o mriatadn an o approninate s Tinear oo r e
ranse of arn -l of attack when conpares Wit fhe s e it s
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The NACA 1lift curve then flattens more rapidly near stall. These minor
differences may be explained by a larger freestream turbulence level in
the NACA results which tends to delay the turbulent trailing edge separa-
tion. Also, the major variation of the lift curve at small angles of
attack occurs for Reynolds numbers less than 106 (56, 89). Freestrear
turbulence can cause more rapid transition and result in an apparent
freestream Reynolds number greater than the nominal turbulence-free value.

The computed turbulent Navier-Stokes 1lift coefficients for the
four angle of attack cases are in excellent agreement with the experi-
mental data as shown in Figure 34. The force components were computed
using trapezoidal integration to sum the total surface stresses obtained
from the flow field solution. The numerical results exhibit a gradual
decrease in slope with increased angle of attack similar to the Seiler
Laboratory data. This behavior is consistent with the data because the
numerical solution has a quiescent incoming freestream with a correspond-
ing smaller apparent Reynolds number. The significant effect that the
viscous separation in the trailing edge region has on the lift coefficient
for angles of attack greater than 8° is observed. The computed values
are within 5% of the experimental results. The lift coefficient was also
computed for each angle of attack using the contour momentum integral
method described in Appendix D. The calculated values differ by less
than 1% for 1 contour paths within one-half chord of the aifoil surface.
This result demonstrates the near flow field consistency in resolving the
lift force. The time dependent terms in Equations 83 and 84 always con-
tributed less than 0.5% of the total computed lift which indicates again
a converged steady solution.

Two inviscid flow predictions for the lift coefficient are shown in
Figure 34 for comparison. The numerical inviscid finite difference results

were computed with the second order accurate trapezoidal integration
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technique used in the viscous calculations. The linear airfoil theory ]
21 slope is included. The inviscid flow results over-estimate 1if: by !

25% at an angle of attack of 5°. This discrepancy increases with angle

of attack because the viscous effects which induce stall are¢ not pre-
sent in an inviscid calculation.

* The computed drag coefficients for the four cases are compared with
available experimental data (56) in Figure 35. The force components were
computed using trapezoidal integration to sum the total surface stresses

obtained from the flow field solution. The drag component is in the

direction of the incoming freestream flow. The rapid increase in the
drag coefficient which accompanies the smaller increase in lift at higher
angles of attack near stall is observed. Jacobs and Sherman (56) acknow-
ledged that the experimental drag data in this Revnolds number region
have error greater than the estimated + 0.001 for the larger Reynolds

number results. The agreement between the present numerical solution and

the experimental data is within ten drag counts in the region of the i
maximum lift to drag ratio.
i

The presented numerical solutions for two-dimensional incompressible .
turbulent viscous flow over airfoils were obtained with several parametric
studies. The effects associated with varying the turbulence transition
values and the SOR iteration parameters including time step size have
already been discussed. The influence of other turbulence model para-
meters, far field boundary conditions, and grid fineness on the numerical
solutions have alsc been investigated.

The turbulence model contains several parameters which can vary. The
effects that changes in these parameters have on the flow field near the air-
foil surface and on the values of lift and drag were examined. The value

was increased by 207 at

of the nominal inner eddy viscosity parameter kl

a 5° angle of attack. The 1ift coefficient subsequently increased by 27 i
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¢ while the drag coefficient increased by 57 or six drag counts. These

integrated effects are caused by the observed small increase of velocity

i in the inner boundary layer on the upper surface. The outer eddy vis- ;

cosity parameter k, was next increased by 50%. The result was an increase

2

in turbulent mixing with a corresponding thicker boundary layer. The

velocities near the edge of the upper surface boundary layer decreased

which caused an 8% loss of 1lift with no apparent effect on the calculated
drag.

Values for the constants in the inner eddy viscosity parameter k1
relaxation factor given by Equation 65 were obtained from a parametric
study at an angle of attack of 11.5°. This angle of attack was chosen
because the effects of the relaxation are significant only for angles of
attack near stall. A solution was initially computed without the relaxa-
tion factor f. The laminar separation bubble remained closed with
trailing edge separation beginning at mid-chord. The calculated values
for the 1lift and drag coefficients were 0.98 and 0.064, respectively. An

examination of the lift curve in Figure 34 reveals that this solution ex-

hibits the character of leading edge stall where an approximate linear

behavior is sustained until separation abruptly occurs. Leading edge stall
does occur for the NACA 0012 airfoil for Reynolds numbers greater than
about 500,000 (56, 89). Thus the mechanism for leading edge stall seems
present within the modified turbulence model. A numerical solution was
next obtained using the relaxation factor with a relaxation distance s. =
0.25 and a delay distance s, = 0. in nondimensional distances. The laminar

d

tubble remain closed, but the trailing edge separation region was signifi-

cantly larger and moved to within the 207 chord location (x = - 0.3). The
lift coefficient decreased substantially to a value of 0.8 while the drag

coefficient increased moderately to a value of 0.074. The final solution
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which has been previously discussed was calculated using distgnces s, =
0.5 and sq = 0.1, The computed lift and drag coefficients became 0.84
and 0.068, respectively, and are in agreement with the experimental data.
The sensitivity of the numerical solution to these parameters has thus
been obtained. The last set of distance parameters was used in calcu-
lating the solutions for the other angles of attack. The onset of
trailing edge separation for the 5° and 7.5° solutions, seen in Figures
4 and 5, indicates that the relaxation factor was not activated. Thus
the relaxation model for parameter k1 affects the flow field only near
stall where the pressure gradient approaches zero over a large portion
of the upper surface,

The relaxation distance WL2 in the near wake turbulence model given
by Equation 74 was also investigated. Numerical solutions were obtained
at 5° angle of attack for relaxation distances equal to 5 and 100 times
the lower surface boundary layer thickness near the trailing edge. No
changes in either the surface pressure distribution or the integrated
force coefficients were observed. In two recent near wake calculations
with similar relaxation models, Waskiewicz (98) used a value of 30 trail-
ing edge boundary layer thicknesses and Hasen (99) used 10 boundary layer
thicknesses. The relaxation distance of 5 boundary layer thicknesses was
retained since the agreement of the Reynolds stress field discussed pre-
viously was improved for this choice.

The effect on the solution of the placement and type of far field
boundary conditions should be considered in any computational work. 1In
this investigation, two types of boundary conditions at different loca-
tions were examined. The four angle of attack solutions that have been
discussed were computed using the freestream far field boundary conditions

described in Sections I11.B and IV.C at a circular outer boundary of radius

10 chords. The effect of the far field boundary placement on an inviscid
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solution for Joukowski airfoils was previously accomplished (82).

This analysis indicated that a radius of 10 chords was sufficient as

discussed in Section IV.C. The effect of the boundary placement on '
the present viscous solution was examined by using an alternate outer

boundary. The J = 40 n contour with a semi-major x axis of 4.77 and

semi-minor y axis of 4.64 was chosen as the new outer boundary because

it approximates a circle with half the previous radius. The numerical

solution was then obtained for o = 5° and compared with the solution

using the 10 chord radius outer boundary. The average values for the

lift and drag coefficients were identical. The solution with the closer
far field boundary had a small oscillatory behavior with variations in

the 1lift and drag coefficients of 1% and 2%, respectively. Further ex-

LT T .

amination of the near surface flow field revealed that the laminar

separation bubble had a small scale unsteadiness which locally affected

1 N

the pressure field.

-

The far field potential flow boundary condition mcdel developed in
Appendix F was next applied with the outer boundary locations of 10 chords

and about 5 chords in turn. This model approximates the small pertur-

bations from the freestream conditions for the velocity and pressure ¢
fields at a large but finite distance caused by the presence of a body in

the flow field. 1In this approach, the upstream boundary conditions for

(R — oo

both velocity and pressure became the calculated values from the inviscid

RN

potential flow model. The downstream boundary condition for pressure

also became the corrected value rather than the freesteam value. The no

change downstream boundary condition for the velocity compouents was re-
tained. The solution was calculated with the revised far field boundary
conditions at the 10 chord radius circular outer boundary. The boundary

conditions were initially updated every 200 time steps (0.2T) by using

g the latest calculated value of the circulation. After three characteristic
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time periods T, the mean values of the lift and drag coefficients

were virtually identical with the previous freestream boundary

condition results. However, while the lift coefficient had variations

of less than 17 from the mean value, the calculated drag coefficient was
periodic with a period of 0.4T and variations of + 1U7. Since the period
of the oscillations was twice the period of the boundary condition update
and the circulation was essentially a constant at this time, the outer
boundary conditions (except the no change downstream condition) were kept
at the current values and the solution was advanced 1.5 characteristic
time periods. At this time, the lift coefficient had a steady value of
0.425 and the drag coefficient became 0.011 + 2% (two drag counts).

These computed results are within 1% of the corresponding coefficients
calculated from the solution using the simple freestream conditions.

Thus the more accurate boundary condition which includes the effect of

a finite distance from the body induces very small changes in the computed
flow field near the airfoil.

The modified far field potential flow boundary conditions were alsco
used at the near-circular five chord radius outer boundary defined above
to obtain a solution again for a = 5°. After two characteristic times,
the outer modified freestream boundary conditions were held constant since
the 1lift coefficient had small variations less than 1%. The solution ex-
hibited a small oscillaiovry behavior similar to the freestream boundary
condition result even after four characteristic time periods. The lift
coefficient had a mean value within 1% of the freestream boundary condition
value with variations below 1%. The drag coefficient had the same average
value as the previous result, but the oscillations were larger with a de-
viation from the mecan of approximately + 107 (10 drag counts). The un-

steadiness was again observed to emanate from tlie laminar separation bubble.
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Small pressure oscillations propagated downstream on the upper surface

of the airfoil and were eventually damped out near the trailing edge. In
eac1 case no changes were made in any of the turbulence or other parameters
during the computations. Small changes in the turbulence transition near
the bubble would probably prevent the unsteadiness.

The far field boundary condition study has indicated that the use
of the freestream boundary conditions at the large but finite distance
from the airfoil surface is sufficient for the computation of the near
surface flow field and force coefficients. Variations in the outer bound-
ary placement and the use of a more accurate far field boundary condition
had negligible effects on the present numerical solution.

The numerical implementation of the downstream no change boundary
condition was also investigated. Second order accurate central spatial
and upwind differences were used in separate solutions for an angle of
attack of 7.5°. No difference (+0.01%) was observed in the surface pres-
sure distributions or computed force coefficients between the two bound-
ary conditions. The computed velocities at locations across the wake on
the outer boundary for the two cases differed by less than 17. The upwind
difference formulation was chosen because of the associated convective
properties.

The sensitivity of the numerical solution to the fineness of the
grid was examined. The 7.5° angle of attack case was chosen because
both the laminar separation bubble and a region of separated flow near
the trailing edge are present. A coarse grid was obtained from the 79x44
grid by deleting the odd numbered N contours except for the body contour.
The coarse 79x23 grid was a subset of the full coordinate svstem and was
used to study the effect of boundary layer resolution on the numerical
solution. The turbulence parameters and SOR acceleration parameters wcre

unchanged from the previous solution. The coarse grid computation was
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carried out over four chacteristic time periods. The calculated values

for the lift and drag coefficients approached a "steady'" periodic state
after two characterisc times with a period of 0.6T. The mean value of the
lift coefficient, averaged over the last two characteristic times, became
0.606 + 2% compared with the full grid solution value of 0.606. The
computed mean drag coefficient was 0.0260 + 15% compared with the 79x44
grid solution result of 0.0240. Values for the wake velocities in the
freestream direction along the outer boundary for each solution compared
within 1%. The unsteadiness was found to originate from the oscillating
laminar separating shear layer which forms the front portion of the bubble.
The edge of the boundary layer varied between the J=3 and J=4 " contours,
as defined by the 79x23 grid system, at the 1% chord location. This motion
also caused the bubble to vary in length and produced pressure oscillations
along the upper surface. This unsteadiness is probably attributed to the
reduced resolution of the bubble in the N direction. Similar sensitivity
has already been discussed concerning the resolution of the extremely

short bubble in the f direction at larger angles of attack.

The computed flow field near the airfoil and the calculation of the
force coefficients using the coarse grid are in agreement with the results
for the complete 79x44 grid. A quadratic Richardson's extrapolation on the
computed drag coefficients indicates an error of +0.0007. This agreement
indicates that the solution obtained with the full 79x44 coordinate system
is adequate to obtain +10 drag counts and therefore sufficiently approximates
the limiting numerical solution obtained from an extemely fine grid. The
coarse grid computation further indicates that the numerical multi-grid
approach (100) may be implemented for complex flows using general grid trans-
formations. The use of only one-half the grid points, for instance,
during most of the time marching procedure would significantly reduce

the computer time required for an equivalent numerical solution.
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SECTION VI

CONCLUSTIO S AND RECOMMENDATIONS L

Numerical solutions have been obtained for two-dimensional incom-
pressible turbulent flow over airfoils near stall. The time dependent
Revnolds averaged incompressible Navier—Stokés equations in the primitive
variables of velocity and pressure together with a Poisson pressure
equation are numerically solved. An algebraic eddy viscosity approach z‘
is modified for separated adverse pressure gradient flows and used to
model turbulent closure of the laminar separation bubble and the subsequent i*
turbulent boundary layver. A deficiency in the standard model is detected

and corrected bty using a "limiting" technique. A body-fitted coordinate

- CPUNER.. s

svstem is numerically transformed to a rectangular grid in the computational

plane. The set of transformed partial differential equations is solved

with an implicit finite difference method. Successive-over-relaxation
iteration is used to solve the syster of linearized difference equations
at each time step.

Numerical solutions are presented for a NACA 0012 airfoil near stall
at a chord Reynolds number of 170,000. A short laminar separation bubble
located near the upper surface suction pressure peak is obtained. Computed
laminar separation bubble characteristics including the criteria for ser-

aration, bubble type, and turbulent transition agree with empirical results.

Surface mean pressure distributions are presented and found to compare v
favorably with experimental data. The separation bubble is observed for
angles of attack of 5° and 7.5°. For larger angles of attack, the small
bubble essentially disappeared within the numerical resolution of the
streamwise grid spacing. The steep leading edge suction pressure peak is

well defined for each angle of attack. Velocity profiles at four stations
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along the upper airfoil surface are compared with experimental results.
The experimental data were obtained at similar grid point locations
so that interpolation was not required. The calculated lift and drag
coefficients are in excellent agreement with the experimental data.
The lift coefficients are within 57 of the experimental values near stall,
and the computed drag coefficients are within 10 drag counts in the region
of maximum lift to drag ratio. The effects of viscous separation on the
lift coefficient curve which produces a maximum value are seen and con-
trasted with a numerically obtained inviscid potential solution with Kutta
condition. The observed phenomena of trailing edge stall is predicted
where the rear separation point moves forward with increasing angle of
attack.

The sensitivity of the numerical solution has been examined in
several areas. A far field potential flow boundary condition which

modifies the freestream conditions for use at a large but finite

distance from the airfoil was considered for two outer boundary placements.

The studv showed that the use of the infinite freestream conditions at an
outer circular boundary of radius 10 chords produces negligible influence
on the near flow field and calculated values for the force coefficients.
A coarse 79x23 grid, compared with the 79x44 grid, was used to evaluate
truncation error. An analysis of convergence for successive-over-
relaxation iteration predicts an upper limit on the time increment for
the implicit finite difference method. Numerical experiments confirmed
this upper bound. Several parameters within the turbulence model were
systematically varied. The only significant sensitivity occurred

near the downstream side of the laminar separation bubble. Small changes
in turbulent transition length and location were found to significantly

change the flow field. This sensitivity may be related to incipient

turbulent separation which results in failure to close the separation
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bubble. This leading edge stall phenomena is observed at higher
Revnolds numbers for the NACA 0012 airfoil.

The agreement between the numerical solu'ions and the experimental
data and empirical results indicates that the eddy viscosity approach
modified for separated adverse pressure gradient flows adequately
models the turbulence on the upper airfoil surface. The near stall
airfoil aerodynamic characteristics are consequently accurately pre-
dicted by the numerical method.

The results of this investigation have suggested areas for further
research. A more exhaustive study of the laminar separation bubble
should be accomplished to better understand the phenomena of leading edge
stall. The computation of a geometry with detailed experimental results
for this purpose is desirable. Further research in adapting the multi-

grid technique would significantly increase the computational efficiency

and appears feasible as a result of the coarse grid calculation. Turbulence
modelling is an area of substantial interest and should be pursued in
conjunction with experimental investigations. The improved accuracy of !

current computational aerodynamics also indicates that the errors in ex-

perimental measurements should be analyzed in a more rigorous manner so
that comparisons can be better evaluated. The method should also bhe
employed in time dependent problems to further exploit the time marching

technique.
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| APPENDIY A
|

GRID TRANSFORMATION RELATIONSHIPS

Several of the definitions and coordinate transformation relations
in the transformec plane are summarized below. The notation use¢d by
Thames (44) and Hodge (53) is retained. The phvsical plare is the (=,
coordinate system and the computational plane is the (°, ) coordinate
system. The following function definitions are used:

f(x, v, t) - a twice differentiable scalar function.

Flx, v, t) = i Fl(x, y, t) + 3 F (¢, v, t) a twice differentiablec

vector function where i and j are Cartesian unit vectors.

Transformation Definitions

2 2

= X+ v (4. 1)

s xamty oy, (4.2
2

= \r‘f' A ([*..3)
Dl = (,«,\. R 2;: x {r <+ ’\vf) ( -iv\
D, = (ay., =20y + v ) (ALD)
J=xx_ - x v. (A.0)

i Tl
=y Py - x PN/ (A7)
o= (er2 - yYU])/J (o=
Derivatives of Scalar Functions in Transformed Planc

f,o= i/ = (v f .~y £/ (AL an
fy = f/y = Ax g~ x 2/ (AT
£ =i/t = ("f/.t),  for fixed coordinates (A.1D)

| t :




Vector Operators in the Transformed Plane
Gradient:

%=i@fy—yﬁ);+“ﬁv'ﬁf95”

— v 4

Divergence:
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Laplacian:

~

Unit Nermal and Tangent Vectors in Phvsical Planc

Normal to ~ line:

E_(V) = T/

4
]

(-v ,.1 + x J Y /s

Norral to { line:

= (_\'Yi_xvj)/\ 1

-y o

Tangent to = line (increasing ¢ direction):

R N N T 2

Tangent to ¢ line (increasing = direction):

NE NG R

(Xmi + yr‘j)/s X

Integrals in the Transformed Plane

Area Integral:
fRfO(, y) dxdy = J;* fF(x(E ), v(& )y J 43

*
where R is the region R mapped into the ({, r) plane.
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Vector Line Integral: r

f F(x,
S

T

where contour

along s , and

max
y) ds = f FGCP, ), y(h T ad (5.21)

min

s,1is any constant T line in the physical plane, s is arclength

np is the value of * for the chosen contour s .
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APPEXNDIN B

FINITE DIFFERENCE APPROXIMATIONS

This appendix presents the finite difference approximations that arec
used in this investigation. The differences are formulated using a func-
tion £(°, ") in the computational or transformed plane. The . ~ and .-
spacings are assumed constant with value unity. The truncation errcr term
is given in derivative form assuming . f and . are equal. The apprcoxima-
tions are second order accurate unless otherwise specified. Time dif{-
ferences are expressed by Zt. The superscript n denotes the nt.'rl time
interval and is understood when omitted. The differences are given for a
(% 1) point location denoted by subscripts (i, j) and are understood when ]
omitted. Space derivatives with respect to only ™ are presented because

the corresponding { derivatives are identical with suoscripts (i, j) reversed.

First time derivative, backward difference, first order:

_ n _n-ly,. -
ft = (f f Y/t - Lt ftt/b + ... (B.1)

First derivative, backward difference, first order:

= .= £, - f 2+ ... B.2
R F LI (2.2)

First derivative, central difference:

£, = (fj+l - fj_l)/z i LI R (B.3)

First derivative, forward difference:

£, = (-fj+2 + 4fj+l - ij) - f I3+ (B.4)

First derivative, backward difference:

fo= (Fyp 4, ) +36) + £ /34 ... (B.5)

[
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Second derivative, central difference:

) - £ /12 + ... (B.6)

£ = 1 rnn

L = 2f, + f,
nn j+1 fJ fJ-

Second derivative, forward difference:

= _ /, _ o) 9 N
£, = ( fj+3 + "fj+2 Sfj+1 + _fj) + llfrr]r‘,l/lh + ... (B.7)

Second derivative, backward difference:

= - - - o] 3
fhn (fj—3 Afj—z + Sfj-l ij) llfrﬁr,/l_ + ... (B.8)
Cross derivative, central difference:
= - - f )
P = (Fian, g1 ™ fawn, 501 * 5io1, 5o~ faon, 5?74

- (f + f &Tn)/za + ... (B.9)

£

Cross derivative, central in 7 and forward in T differences:

f, = <=3(f )

o S ey

i+1 , 341 T fi—l, 3+1

- (f - f Y4+ (f;

41, 342 - Fiol, g +Eg. /6% 0 (B.10)

Cross derivative, central in ! and backward in ™ differences:

£, = 3(f - f, ) - 4(f

8 i+1 i-~1 )

i1, 3-1 ~ fio1, g-1

-— 1 -
0, j-2 ~ fio, j_2)</4 (frpp + 1 gy )6 s (BID)
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APPENDIX C

GRID MODIFICATION FOR WAKE RESOLUTION

This appendix describes the technique that is used to insert addi-
tional grid lines in the region of the airfoil wake. The body-fitted coor-
dinate grid system becomes coarse at distances far from the body. The
coarse grid may reduce the resolution of the velocity defect in the viscous
far wake region. In order to increase wake resolution, eight additional ¥
lines are placed downstream of the airfoil with body points on the rounded
trailing edge. The original numerically generated grid has 71 7 and 44 ~
lines. Linear interpolation between adjoining 7 lines of the form xp(I,J)

= “x(I-1, J) + x(I, J)}/2 is used to locate a £ line between lines 1 = 1

and I =2, 1 2and I =3, I =69 and 1 =70, and 1 = 70 and I = 71. The
procedure is repeated using the new lines as well except only one additional
line is located below the I = 1 cut. In this way the fine grid spacing has
an asymmetry for better wake resolution at angle of attack. The final 79
by 44 grid is shown in Figure 3. Table C.I gives the numbered 1 index

(Z line) designation for the grid systems in the wake region.




TABLE C.1

I Index (° lLine) Designation for Grid Systems in Wake

71 x 44 System 73 x 44 Svsten
69 71
- 72
70 73
- T4
71, 1 35, 1
- 2

79

pA

44 Svsten

R T
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APPENDIX D

CONTOUR INTEGRAL METHOD FOR DETERMINING BODY FORCE COEFFICIENTS

The determination of the resultant force that a flow field exerts on
a body usually involves the calculation of surface pressure and viscous
stresses and the summation of these forces over the body surface. An
alternate approach is to apply a control volume analysis to a region
enclosing the body. In the foregoing discussion, a control volume analysis
for a body in a two dimensional flow is presented.

Consider a general body immersed in a flow field with surface e
Define a fixed control volume V with outer surface c. and inner surface GB.
Conservation of linear momentum for the fluid in V is expressed by the

Cauchy Integral Equation of Motion

D v oav = b dv N T oar
o0 j"l a- f,g av + fn T d7 (p.1)

\Y v o

where . is the density, v velocity field, b body force per unit mass, n
unit outwara surface normal vector, T traction stress, and T is the total
sur{ace ﬁB + o Apply the Reynolds Transport Theorem to the material

derivative terw and the Divergence Theorem to the surface integral and obtain

. .th .
from Equation D.1 for the i Cartesian vector component

.;__ i 5 v - Vo= D-:)
‘}P T (. Vi) dv + \I~‘j('\i vj Tji) dv 0 ( )

v v
Apply the Divergence Theorem to the second volume integral and express the

resulting surface integral as separate integrals over hB and ©~  to obtain

I
J
|
!




"R Or
=0 (D.3)
Now, on the solid non-porous body surface Ogo nj vj = 0. The integral
of the resultant traction force over Cq is the net force exerted bv the

body on the control volume fluid. Therefcre, the force F exerted by the

fluid on the body is given by
F. = - gjﬂ n, T,. dc (D.4
i j i

Substitute Equation D.4 into D.3 and use the above surface condition to

obtain a general expression for the force exerted by the fluid on the body.

3 . Ny -
Fi = - A7 hJRE vy dv + v/N nj(Tji —.,vi\j) d: (D.5)

vV c

v
|

Now consider the case of two-dimensional flow in the x-y plane. Then

Equation D.5 becomes the following expression for the force per length of

f.= - - f av, dA 4+ fn_(T.. -.v,v,) ds (n.6)
1 't 1 ] Ji 1]

where A is the cross sectional area of the control volume and s is the outer

span f

perimeter of A as shown in Figure 36.
Substitute for the traction stress Tii = -pf., 4+ Tji in Eguation D,k

and obtain




where p is the pressure, Tji i{s the laminar viscous stress arnd
is the Kronecker Delta Function. Next express the {low variatles in
terms of turbulent mean and fluctuating varicbles, assume incompressiile

flow, and Reynolds average Equation .7 to obtain

[ f n,oep L+ - (Vv 4 vl ds
1 ] B }

LIS )
i i i
s, J J J
- — f\_/ dA (7.5
v i
I‘\
The term - 1€h;§> is the turbulent Revnolds stress ftji' Lot the toetel stres
be defined as ... = -, .+ ... Then Fquation T.¥ becones
Iji Ji tji
£ =fn P L ovov d;-—fG.J (1
i ji Iii 1] t i
s, N

P - P, v, X . Ly
t) = v, = R > = s and t = —- and nete g
T i T ¥4 L h 3 , and :
p L - R . . .
A o where is the freestrearn velocity and ! is o roelerer. 1
[ji v il " 4
r
length in the x direction. Also, define the force coefticient (1 = i _

and obtain from Equation D.9

. 1 . '
) = 7 f e s + ot . - ' ’ W - 3 _ f ',\J,‘-. Pt |
( 2 n., =p .. LTy \i\j ds . vy '

f S i !
i “5 J J

where all variables are understood to be mean dimensionless varia? 1o "o

the turbulent eddy viscosity concept is used where '

e = G ) Covo 4 o) i
I'ji M i joi
UL
and define Re = A which transforms Fquation I'. 10 to the *ollovine
T
c. =2 “[ n, -p'.. 4+ 1 (v, + -v.) = v.,v, ds - 2 - vy (b1
fi s ] ji Rct ij ji 1] t !

Expand Fquation D.11 into x and v component equations




C,
‘_\
-2 f uda (D.12a)
A
c. =2 -j‘ n.p + 1 [n 2n Ay {uvn, + vn,) ds
I S, 2 Re 1 T Ly 1 2
-2 = vda (p.12v)

where ny and N, arv the x and y components of the unit outward nermul
vector n o for the outer boundary s of area A. Fquations (I.12a) and (3. 1710
are expressions for the x and v force coefficients exerted hy a two-
dimensionul Incompressible turbulent flow on an arbitrarv two-dirensiona!
bodwv where path 5, encloses the body and an eddy vioscosity method is uscd
to model turbulence.

Lift and drag coefficients are then obtained from the force coefticients

as follows where @ is the geometric angle of attack.
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APPENDIN E 3
!
TIME INCREMENT INFLUENCE ON SOK CONVERGENCE
I
Implicit SUR methods have been shuwn by lincar stability analvees
to be unconditionally stable. However, convergence has required a smull
hY
time step size in this investigation and elsewherv. The following analv-
sis indicates the relationship between the time step size and convergence.
b

Consider the svsterm of difference equativns to be written in the ~

followin, matrix forno:

AU = b (K.

where A {s the coefficient matrix, U is the vector of unknown primitive

variables at time step n with u, v, p arouped together for cach (i,i)

point location, and b is a vector of "constants'. For example, the x com-

ponent of the momentun equation, Equation 92, at the (i1,3) point is
Q uij) = u?;l + Lt[-YETA (b, 5T P DN Gy ey ) |
UG Gy g T ) P VO Gy ey sy e MY Gy s 1
...+ vV Gu, L - ou, ) + L. TALFA (u, .+ u, D) 1

V2 iavl i Jve RET i+1 i-1 i
*OAA Quy gy Puy o) FOBETA Qupy gy T Ny g T Y sy T ;
(=D (r.m :

Yio1 g1’ T Mg

where all coefficients are evaluated at point (i,j) and primitive variables

are at time step n unless given otherwise, and Q is given b

,

Q=1+ 35eCUC & VO + [V 4+ VV )+ = (ALFA + GAN )
-

t

Rearrange Fquation E.. and obtain

-
Vu + ngx\l + 4 UC

- e R R U I o
A (S V2 ) RET i-1 -1 Yicl j W1




e e —

ALFA \ BETA . -
An 'ET: e T =W

Y rer Yio1 g PYRTA Py 5 T ReT Yio1 g1 T MG Y ger VYN g

y O +4 VC u +4 WV u - YXI S
RET i j-1 Sre Yy e T Y n S Pyogo1 T T Yij
GAMA BETA ALFA ,

4 oo + YXI - + o= SAE
Rel Y15+l 7 VD Py ogp1 TRET Ml g-1 T Rer Yie1 5 7 UEEE Pigy g

n-1

BETA u, (s-1) o
AR} = - + .

Y RET Yi41 541 L ug; P SERL

A similar v component of momentum equation is obtained if u is replaced b=
v = YETA by MNFTA; and YNI by - NXNIT.
The finite difference pressure Equation 94 becones
-

+ BETA p. +4 UV + ALFA p_

Prvo g i-1 -1 NP 1]
- T A _ \V\. + G \"_‘ +! Tavee _
BETA Py 1 541 Pyogvo T ONR Py P VY Ry ey T BRyy
AN - BETA + ALF + BETA p... . = -RuS
FONRDG g T BETA P g TAMRA P BT R 5y Ris
(F.3)
Dn—l o A
where B=2 (ALFA+GAMA) + ¥ (( UV, + VU ) and RHS = = “m— + [(UX) 742V )+ (VY

Convergence theorems (81) for systems of linear equations with constant
coefficients show that a necessary and suff{icient condition for convergence

requires that the coefficient matrix be diagonally dominant. I{ this criteria

]

is applied to the above quasi-linear system, the following convergonce criteria,

inequality E.6 from the momentum equation and inequality V.t from the pressure

equation, are obtained:

N

5 (UC + VC + UV + VUV ) + < (CALFA 4 CAMA D

RET
+ 2 BETA 4+ 2(YNI 4+ vElao o @
RET = AT . St
or - 3 (VC 4+ VO 4+ UV 4+ \V ) 4 P;r ( ALFA 4+ GAMS 0+ ? (r.s)
8 t

which becomes




and

2(,ALFA + GAMY' ) 44 BETA + 5 ( UV + VvV )

2()ALFA, 4+ GAMA ) + 3 (LUV + VW) (E.7)
or 4 'BETA + 2 ('U'V.+ VW ) -0 (E. &)

The convergence criteria, Fquation E.6, provides a limit on "t as a
function of both the grid geometry and flow field solution. The right hand
side of the inequality has its smallest magnitude near the trailing edyc
and increases rapidly away from the airfoil. An order of magnitude analvsis
of the grid coefficients and an examination of the computational solutions
indicate that diagonal dominance occurs if 't < 0.0003 for point: near the

»

trailing edge, “t 7 0.001 elsewhere near the body, and t = 1 in the far
field. The pressure equation convergence criteria, Equation E.Z, has no 't

dependence and is approximately satisfied only at points far from the

body where the left hand side approaches zero. These criteria can only

indicate a possible time step restriction since the syvstem of equaticns has

variable coefficients and lower order nonlinearities.

A numerical experiment was conducted to determine the time step effuct 1
on convergence, A computation for the flow over the NACA 0012 airfoil at k

an angle of attack of eight degrees was used. The sclution was advanced

one time step with the time step size and number of iterations per time

step varied. The solution converged for time steps of (0.0005 and 0.00] while
diverging for a time step of 0.005. The relative maximum error magnitudes

for the u component of velocity, surface pressure Py and fleld pressure
)
|

p as functions of number of iterations are shown for each time step in

Figures 37, 38, and 39. The relative cerror is Jefined as (f“ - fn_]\/fn.

The v component of velocity errors behave similarlv to the u conponent.,
F 3 : i

Next, the pressure wa= held fixed and the convergence of the velocity

was monitored (Figures 137, 38, and 39, The rapid rate of converyence i




observed. The u and v velocity components were also held fixed in

turn to test convergence. In both cases, convergence was similar to

the general solution case. These numerical experiments indicate thut -
the convergence of pressure is slow and that convergence is dependent

on time step sizes similar to those predicted by the simple analvsis

ahove.




APPENDIN F

FAR_FIELD BOUNDARY CONDITIONS

The far field boundary for a numerical solution must usuall:
be at a finite distance from the body of interest. This constraint

may pose difficulties if the only known far field boundary conditions

are those at infinityv. This analysis uses complex variable methods
for incompressible potential flow and develops approximate far ficld
boundarw conditions for use at a finite distancce.

Consider a circular cylinder radius a and center at the crigin, with

positive clockwise circulation -, in a uniform stream (velocity Tl\, -

at angle of attack :. This coordinate svsten is identical with the ;
. 4
phvsical plane of the airfoil. The complex velocity is fi
o ;. @ratt) L - .
Wo(E) = U, - S — 45 = (F.D) A

- % - £

where the first term is the uniform strearm contribution, the second

term is a doublet of strength Z“altl, and the third term is a vortex of

strength

I

Next, use the Kutta-Joukowski Theorem for 1lift and the definition

of the lift coefficient to obtain

D= (1/2) ¢ U e (F.2)

L

where ¢ is the airfoil chord.

1-

e T S AP

Nondimensionalize Equation F.1 velocities with the freestream velocity

and lengths with the airfoil chord ¢ and substitute Equation ¥.2 into F.l X

and obtain ‘

e e




. a” ia Cl 1
W@ =e " -@ S+ i (F. %)
C % -~

where W is the nondimensional complex velocity and 2 is the nondimensional
complex variable &2 = x + 1iy.

Airfoil transformations such as the Joukowski and Treffetz Trans-
formations transform a cvlinder into an airfoil with a chord of four
radii. Thus, for a given chord ¢, choose the cvlinder radius to be 1/4
c which gives a scaling factor %-= 1/4 in the doublet. Then the complex

velocity for the flow around the scaled cylinder becomes

i o ‘Lo
. -1 > R B ’
W =e mggr Y i g (F.4)

Expression r.4 can then be used to approximate the far field potential

flow over the airfoil of chord ¢ with circulation I in the same phvsical
plane.
Let the far field boundary be a circle of radius T, where
. io : , , , .
£ = r. e, 0 - = 27, Substitute for 2 in Equation F.4 and obtain
i - C -
-1 o =21 1L -1 -
y = - - 3 + i = F.
We () =ce Thz e i - e (F.5)
f
Combine the exponential terms in F.5 and use the fact that W = u-iv,
where u and v are the x and y velocity components, to obtain
u.{ ) = cos - L cos (o« = 20) + EL sin | (F.o0)
£ l6r - 47r,
i b
1 L
v. () = gsin a1 + .= sin (4 = 27) - — cos - (F.6h)
f 161‘f AT

In both Equations F.6, the first term is the freestream velocity contrihution,

the second term is the doublet contribution, and the third term is the
vortex contribution. As e approaches infinity, the inf{inity freestreanm
boundary conditions for u and v are recovered. Also, the doublet tern
is of higher order in l/rf than the vortex term for the case of a lifting

airfoil and mav be d.
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The far field pressure is obtained by applying Bernoulli's
equation for irrotational incompressible flow and using the nondimensional
fo'm for pressure. The result for the far field boundary is

Pg () = 1/2 “1-(u.” + v

¢ f‘)’ (F.7)

The far field boundary conditions of Equatione F.6 and F.7 modify the
infinity freestream conditions by incorporating effects on the {low of
body thickness and circulation at a large but finite distance from
the airfoil.

Transonic small disturbance theory for slender bodies and airfoils
has similar expressions for the far field conditions. FKlunker (101) has
obtained an asvmptotic solution applicable at large distances from thin
airfoils. This form has been used as a numerical outer boundary condition.
For the limiting case of incompressible two-dimensional flow, the doutlet
and vortex strengths are compared below with the general forms found in
Equation F.1.

The nondimensional velocity potential doublet in the far field

from Klunker becomes

(o]
o1 X -
4T T zjo'p<s>ds (r.8)

where F(s) is the airfoil thickness function. The doublet st-ength is thu:
Zv{F(s)ds. The NACA four digit airfoll thickness function (67) is
S 26 £ sy 2843 (5
F(s) 02 (.2969 (C) - .126 5 .3516(C) + .2843 (C)

.1015 (—i—) ) (r.9)

where ¢ is the airfoil chord, f is the maximum thickness as a fraction

of chord and s is the chord distance, 0 © s 7 c.

Substitute the thickness function Equation F.9 into the doublet strength
expression and obtain the following doublet strength from transonic small

disturbance theory:

L= 0.685 fc' (¥.10)

D
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For the case of a NACA 0012 airfoil, uD = 0.0822¢?. The corresponding

doublet strength in the simple potential flow model from Equation F.l1 is 27

2 2
(%) or .3972¢ . Klunker points out that the doublet may be neglected in

the far field for finite circulation flows because the vortex contribution
is of order (%%) compared with an order (%%)2 for the doublet.

The vortex potential term of Klunker for the case of incompressible
two~dimensional flow is

¢ = Lz sgn {(v) + tan _1(5)1 (F.11)
v 2w 2 SBROW v :

where T is the clockwise circulation, the inverse tangent function is

defined on the interval (- %} %), and the angle within braces is defined
leCkwise from the negative x axis. This potential function is identical

with the vortex function in Equation F.l where the clockwise strength s again
T and the angular orientation is the right hand polar coordinate © de: ed
counterclockwise from the positive x axis.

Thus the for field potential for each method differs only in the

thickness or doublet term. Furthermore, for flows with finite cir-i1"ation

this difference is negligible because the vortex term dominates.

P S



APPENDIX C

NUMZRICAL INVISCID FLOW RESULTS

A numerical solution for the inviscid flow over the NACA (012
airfoil is obtained for comparison with both the Naiver-Stokes computation
and the experimental data. The numerical algorithm, developed by Thanmes
(44), which solves Laplace's equation for the stream function in two-
dimensional flow is used. The method uses SOR iteration to solve the
system of equations written in terms of body-fitted coordinates. hie

stream function value on the body can either be specified or computed

e

imposing a given circulation or a Kutta condition.
The stream function equation for two-dimensional flow is

y + = (G.1
txx Tty T O G.1)

Rewrite Equation G.l in terms of the transformed variables in the

computational plane using expressions in Appendix A to obtain

i
4

e S)

i +a + o, 4T b, =0 (.2

[CRRURES ’
YEL T nn r vE

iaal

The boundary condition for the stream function on the outer beundar., which
is a radius of ten chords, is the freestream value

wf = ¥p cos o - X sin JL (YR

where (x yf) are coordinates on the outer computational boundar: o

f’

o is the angle of attack. Hodge and Ghia (82) have shown byv an

inviscid analysis that this boundary condition induces an error in 1ift
of less than 17 for angles of attack less than 10°. The boundary
condition on the body is

tb = constant (¢330

The constant can be specified or determined by imprsing a given circula-

tion or a Kutta condition. The Kutta condition which matches the upper




and lower trailing edge surface velocities by extrapolation is select-

ed. The details for each option are given by Thames (4-).

The derivatives in the transfcrmed Equation (.2 are approvimated

by central difference formulas found in Appendix BE. The resultin,

system of equations is solved by SOR as described by Thames (243, S le-

tions are obtained for 0°, 5°, 7.5°, 9.5%, and 11.5% for the NACA 0700

airfoil section. The body surface pressure coefficients can be calculated

from the stream function solution as follows.
is defined as

C =1- (u’ + v (i, 4)

p

where at a location on the body u and v are the x and y components of th

flow velocity nondimensionalized by the freestrear velocity. Use the

definition of the stream function to obtain

C =
P

Then rewrite the Equation C.5 in terms of the transformed variables and

1 - 1(;},)“ + G (G.5)

note that .., = 0O on the body to give

C =1~ () (C.6)

p J T

where all quantities are evaluated on the body surface. The body pressure

coefficients, calculated using Equation G.6 with second order one-sided

differences, are plotted in Figures 16, 17, 18, 19, and 33. A typicul

streamline plot for @ = 11.5° is shown in Figure 40. The numerical in-

viscid solution is also compared with an analytical solution (H7) which

uses Theodorsen's (12) method. The excellent agreement is scen in

Figure 40 where both solutions are plotted.

The body pressure coefficien

+
1



APPENDIX H

EXPERIMENTAL DATA

This appendix presents the unpublished data which have been obtained
experimentally at the Air Force Frank J. Seiler Research lLaboratory, USAYV
Academv, Colorado, by laboratory personnel and used in this work.

Airfoil upper and lower surface mean pressure coefficient measure-

ments for nominal attack angles of 0°, 5°, 8°, 10°, and 12° at a chord

Revnolds number of 170,000 are given in Table H.I. The pressure coefficient

is defined as the static pressure, relative to freestream static pressure,

nondimensionalized by the freestream dynamic pressure as follows: CP =

N

P - Pl)/l.vtf . The two sets of hot wire anemometry velocity field data
near the upper and lower airfoil surfaces on designated paths are presented
in Table H.1I. The velocity field and Reynolds stress u'v' data for the
near wake region are presented in Table H.1I1I. The data have been non-
dimensionalized by the measured freestream velocity. The spatial locations
in the physical coordinate system for each path are given in Table H.IV
where location (0,0) is the airfoil center and the x axis lies along the
airfoil chord.

The spatial measurement locations correspond with computational grid
point locations on constant ° lines or - lines in the physical plane. The
experimental lead time necessitated the use of the original 71 » 44 prid

system. The I, J index notation designates, however, the point indexing

(7,7) in the final 79 x 44 grid described in Appendix C.
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